internal/core/eval: implement core evaluator

Does not yet implement imports and builtins.

- adds implementations for adt types
- adds eval package with higher-level evaluation
- some tweaks to compile

Change-Id: Ie91bd0bde8a03ed9957f306166042f56aebe19ce
Reviewed-on: https://cue-review.googlesource.com/c/cue/+/6280
Reviewed-by: Marcel van Lohuizen <mpvl@golang.org>
diff --git a/internal/core/eval/eval.go b/internal/core/eval/eval.go
new file mode 100644
index 0000000..28fe99b
--- /dev/null
+++ b/internal/core/eval/eval.go
@@ -0,0 +1,1504 @@
+// Copyright 2020 CUE Authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//     http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Package eval contains the high level CUE evaluation strategy.
+//
+// CUE allows for a significant amount of freedom in order of evaluation due to
+// the commutativity of the unification operation. This package implements one
+// of the possible strategies.
+package eval
+
+// TODO:
+//   - result should be nodeContext: this allows optionals info to be extracted
+//     and computed.
+//
+
+import (
+	"fmt"
+
+	"cuelang.org/go/cue/ast"
+	"cuelang.org/go/cue/errors"
+	"cuelang.org/go/cue/token"
+	"cuelang.org/go/internal/core/adt"
+	"cuelang.org/go/internal/core/debug"
+)
+
+func Evaluate(r adt.Runtime, v *adt.Vertex) {
+	format := func(n adt.Node) string {
+		return debug.NodeString(r, n, printConfig)
+	}
+	e := New(r)
+	c := adt.New(v, &adt.Config{
+		Runtime: r,
+		Unifier: e,
+		Format:  format,
+	})
+	e.Unify(c, v, adt.Finalized)
+}
+
+func New(r adt.Runtime) *Evaluator {
+	return &Evaluator{r: r, index: r}
+}
+
+// TODO: Note: NewContext takes essentially a cue.Value. By making this
+// type more central, we can perhaps avoid context creation.
+
+func NewContext(r adt.Runtime, v *adt.Vertex) *adt.OpContext {
+	e := New(r)
+	return e.NewContext(v)
+}
+
+var printConfig = &debug.Config{Compact: true}
+
+func (e *Evaluator) NewContext(v *adt.Vertex) *adt.OpContext {
+	format := func(n adt.Node) string {
+		return debug.NodeString(e.r, n, printConfig)
+	}
+	return adt.New(v, &adt.Config{
+		Runtime: e.r,
+		Unifier: e,
+		Format:  format,
+	})
+}
+
+var structSentinel = &adt.StructMarker{}
+
+var incompleteSentinel = &adt.Bottom{
+	Code: adt.IncompleteError,
+	Err:  errors.Newf(token.NoPos, "incomplete"),
+}
+
+type Evaluator struct {
+	r       adt.Runtime
+	index   adt.StringIndexer
+	closeID uint32
+}
+
+func (e *Evaluator) nextID() uint32 {
+	e.closeID++
+	return e.closeID
+}
+
+func (e *Evaluator) Eval(v *adt.Vertex) errors.Error {
+	if v.Value == nil {
+		ctx := adt.NewContext(e.r, e, v)
+		e.Unify(ctx, v, adt.Finalized)
+	}
+
+	// extract error if needed.
+	return nil
+}
+
+// Evaluate is used to evaluate a sub expression while evaluating a Vertex
+// with Unify. It may or may not return the original Vertex. It may also
+// terminate evaluation early if it has enough evidence that a certain value
+// can be the only value in a valid configuration. This means that an error
+// may go undetected at this point, as long as it is caught later.
+//
+func (e *Evaluator) Evaluate(c *adt.OpContext, v *adt.Vertex) adt.Value {
+	var resultValue adt.Value
+	if v.Value == nil {
+		save := *v
+		// Use node itself to allow for cycle detection.
+		s := e.evalVertex(c, v, adt.Partial)
+
+		if d := s.disjunct; d != nil && len(d.Values) > 1 && d.NumDefaults != 1 {
+			v.Value = d
+			v.Arcs = nil
+			v.Structs = nil // TODO: maybe not do this.
+			// The conjuncts will have too much information. Better have no
+			// information than incorrect information.
+			for _, d := range d.Values {
+				d.Conjuncts = nil
+			}
+		}
+
+		resultValue = v.Value
+
+		result := s.result()
+		*v = save
+
+		if result.Value != nil {
+			*v = *result
+			resultValue = result.Value
+		}
+
+		// TODO: this seems unnecessary as long as we have a better way
+		// to handle incomplete, and perhaps referenced. nodes.
+		if c.IsTentative() && isStruct(v) {
+			// TODO(perf): do something more efficient perhaps? This discards
+			// the computed arcs so far. Instead, we could have a separate
+			// marker to accumulate results. As this only happens within
+			// comprehensions, the effect is likely minimal, though.
+			arcs := v.Arcs
+			*v = save
+			return &adt.Vertex{
+				Parent: v.Parent,
+				Value:  &adt.StructMarker{},
+				Arcs:   arcs,
+			}
+		}
+		// *v = save // DO NOT ADD.
+		err, _ := resultValue.(*adt.Bottom)
+		// BEFORE RESTORING, copy the value to return one
+		// with the temporary arcs.
+		if !s.done() && (err == nil || err.IsIncomplete()) {
+			// Clear values afterwards
+			*v = save
+		}
+		if !s.done() && s.hasDisjunction() {
+			return &adt.Bottom{Code: adt.IncompleteError}
+		}
+		if s.hasResult() {
+			if b, _ := v.Value.(*adt.Bottom); b != nil {
+				*v = save
+				return b
+			}
+			// TODO: Only use result when not a cycle.
+			v = result
+		}
+		// TODO: Store if concrete and fully resolved.
+
+	} else {
+		b, _ := v.Value.(*adt.Bottom)
+		if b != nil {
+			return b
+		}
+	}
+
+	switch v.Value.(type) {
+	case nil:
+		// Error saved in result.
+		return resultValue // incomplete
+
+	case *adt.ListMarker, *adt.StructMarker:
+		return v
+
+	default:
+		return v.Value
+	}
+}
+
+// Unify implements adt.Unifier.
+//
+// May not evaluate the entire value, but just enough to be able to compute.
+//
+// Phase one: record everything concrete
+// Phase two: record incomplete
+// Phase three: record cycle.
+func (e *Evaluator) Unify(c *adt.OpContext, v *adt.Vertex, state adt.VertexStatus) {
+	// defer c.PopVertex(c.PushVertex(v))
+
+	if state <= v.Status()+1 {
+		return
+	}
+
+	if x := v.Value; x != nil {
+		// if state == adt.Partial || x == cycle {
+		// 	return
+		// }
+		return
+	}
+
+	n := e.evalVertex(c, v, state)
+
+	switch d := n.disjunct; {
+	case d != nil && len(d.Values) == 1:
+		*v = *(d.Values[0])
+
+	case d != nil && len(d.Values) > 0:
+		v.Value = d
+		v.Arcs = nil
+		v.Structs = nil
+		// The conjuncts will have too much information. Better have no
+		// information than incorrect information.
+		for _, d := range d.Values {
+			d.Conjuncts = nil
+		}
+
+	default:
+		if r := n.result(); r.Value != nil {
+			*v = *r
+		}
+	}
+
+	// Else set it to something.
+
+	if v.Value == nil {
+		panic("errer")
+	}
+
+	// Check whether result is done.
+}
+
+// evalVertex computes the vertex results. The state indicates the minimum
+// status to which this vertex should be evaluated. It should be either
+// adt.Finalized or adt.Partial.
+func (e *Evaluator) evalVertex(c *adt.OpContext, v *adt.Vertex, state adt.VertexStatus) *nodeShared {
+	// fmt.Println(debug.NodeString(c.StringIndexer, v, nil))
+	shared := &nodeShared{
+		ctx:   c,
+		eval:  e,
+		node:  v,
+		stack: nil, // silence linter
+	}
+	saved := *v
+
+	for i := 0; ; i++ {
+
+		// Clear any remaining error.
+		if err := c.Err(); err != nil {
+			panic("uncaught error")
+		}
+
+		// Set the cache to a cycle error to ensure a cyclic reference will result
+		// in an error if applicable. A cyclic error may be ignored for
+		// non-expression references. The cycle error may also be removed as soon
+		// as there is evidence what a correct value must be, but before all
+		// validation has taken place.
+		*v = saved
+		v.Value = cycle
+		v.UpdateStatus(adt.Evaluating)
+
+		// If the result is a struct, it needs to be closed if:
+		//   1) this node introduces a definition
+		//   2) this node is a child of a node that introduces a definition,
+		//      recursively.
+		//   3) this node embeds a closed struct.
+		needClose := v.Label.IsDef()
+
+		n := &nodeContext{
+			kind:       adt.TopKind,
+			nodeShared: shared,
+			needClose:  needClose,
+
+			// These get cleared upon proof to the contrary.
+			// isDefault: true,
+			isFinal: true,
+		}
+
+		closeID := uint32(0)
+
+		for _, x := range v.Conjuncts {
+			closeID := closeID
+			// TODO: needed for reentrancy. Investigate usefulness for cycle
+			// detection.
+			if x.Env != nil && x.Env.CloseID != 0 {
+				closeID = x.Env.CloseID
+			}
+			n.addExprConjunct(x, closeID, true)
+		}
+
+		if i == 0 {
+			// Use maybeSetCache for cycle breaking
+			for n.maybeSetCache(); n.expandOne(); n.maybeSetCache() {
+			}
+			if v.Status() > adt.Evaluating && state <= adt.Partial {
+				// We have found a partial result. There may still be errors
+				// down the line which may result from further evaluating this
+				// field, but that will be caught when evaluating this field
+				// for real.
+				shared.setResult(v)
+				return shared
+			}
+			if !n.done() && len(n.disjunctions) > 0 && isEvaluating(v) {
+				// We disallow entering computations of disjunctions with
+				// incomplete data.
+				b := c.NewErrf("incomplete cause disjunction")
+				b.Code = adt.IncompleteError
+				v.SetValue(n.ctx, adt.Finalized, b)
+				shared.setResult(v)
+				return shared
+			}
+		}
+
+		// Handle disjunctions. If there are no disjunctions, this call is
+		// equivalent to calling n.postDisjunct.
+		if n.tryDisjuncts() {
+			if v.Value == nil {
+				v.Value = n.getValidators()
+			}
+
+			break
+		}
+	}
+
+	return shared
+}
+
+func isStruct(v *adt.Vertex) bool {
+	_, ok := v.Value.(*adt.StructMarker)
+	return ok
+}
+
+func (n *nodeContext) postDisjunct() {
+	ctx := n.ctx
+
+	// Use maybeSetCache for cycle breaking
+	for n.maybeSetCache(); n.expandOne(); n.maybeSetCache() {
+	}
+
+	// TODO: preparation for association lists:
+	// We assume that association types may not be created dynamically for now.
+	// So we add lists
+	n.addLists(ctx)
+
+	switch err := n.getErr(); {
+	case err != nil:
+		n.node.Value = err
+		n.errs = nil
+
+	default:
+		if isEvaluating(n.node) {
+			// TODO: this does not yet validate all values.
+
+			if !n.done() { // && !ctx.IsTentative() {
+				// collect incomplete errors.
+				// 	len(n.ifClauses) == 0 &&
+				// 	len(n.forClauses) == 0 &&
+				var err *adt.Bottom // n.incomplete
+				// err = n.incomplete
+				for _, d := range n.dynamicFields {
+					x, _ := ctx.Concrete(d.env, d.field.Key, "dynamic field")
+					b, _ := x.(*adt.Bottom)
+					err = adt.CombineErrors(nil, err, b)
+				}
+				for _, c := range n.forClauses {
+					f := func(env *adt.Environment, st *adt.StructLit) {}
+					err = adt.CombineErrors(nil, err, ctx.Yield(c.env, c.yield, f))
+				}
+				for _, x := range n.exprs {
+					x, _ := ctx.Evaluate(x.Env, x.Expr())
+					b, _ := x.(*adt.Bottom)
+					err = adt.CombineErrors(nil, err, b)
+				}
+				if err == nil {
+					// safeguard.
+					err = incompleteSentinel
+				}
+				n.node.Value = err
+			} else {
+				n.node.Value = nil
+			}
+		}
+
+		// We are no longer evaluating.
+		n.node.UpdateStatus(adt.Partial)
+
+		// Either set to Conjunction or error.
+		var v adt.Value = n.node.Value
+		kind := n.kind
+		markStruct := false
+		if n.isStruct {
+			if kind != 0 && kind&adt.StructKind == 0 {
+				n.node.Value = &adt.Bottom{
+					Err: errors.Newf(token.NoPos,
+						"conflicting values struct and %s", n.kind),
+				}
+			}
+			markStruct = true
+		} else if len(n.node.Structs) > 0 {
+			markStruct = kind&adt.StructKind != 0 && !n.hasTop
+		}
+		if v == nil && markStruct {
+			kind = adt.StructKind
+			n.node.Value = &adt.StructMarker{}
+			v = n.node
+		}
+		if v != nil && adt.IsConcrete(v) {
+			if n.scalar != nil {
+				kind = n.scalar.Kind()
+			}
+			if v.Kind()&^kind != 0 {
+				p := token.NoPos
+				if src := v.Source(); src != nil {
+					p = src.Pos()
+				}
+				n.addErr(errors.Newf(p,
+					// TODO(err): position of all value types.
+					"conflicting types",
+				))
+			}
+			if n.lowerBound != nil {
+				if b := ctx.Validate(n.lowerBound, v); b != nil {
+					n.addBottom(b)
+				}
+			}
+			if n.upperBound != nil {
+				if b := ctx.Validate(n.upperBound, v); b != nil {
+					n.addBottom(b)
+				}
+			}
+			for _, v := range n.checks {
+				if b := ctx.Validate(v, n.node); b != nil {
+					n.addBottom(b)
+				}
+			}
+
+		} else if !ctx.IsTentative() {
+			n.node.Value = n.getValidators()
+		}
+		// else if v == nil {
+		// 	n.node.Value = incompleteSentinel
+		// }
+
+		if v == nil {
+			break
+		}
+
+		switch {
+		case v.Kind() == adt.ListKind:
+			for _, a := range n.node.Arcs {
+				if a.Label.Typ() == adt.StringLabel {
+					n.addErr(errors.Newf(token.NoPos,
+						// TODO(err): add positions for list and arc definitions.
+						"list may not have regular fields"))
+				}
+			}
+
+			// case !isStruct(n.node) && v.Kind() != adt.BottomKind:
+			// 	for _, a := range n.node.Arcs {
+			// 		if a.Label.IsRegular() {
+			// 			n.addErr(errors.Newf(token.NoPos,
+			// 				// TODO(err): add positions of non-struct values and arcs.
+			// 				"cannot combine scalar values with arcs"))
+			// 		}
+			// 	}
+		}
+	}
+
+	var c *CloseDef
+	if a, _ := n.node.Closed.(*acceptor); a != nil {
+		c = a.tree
+		n.needClose = n.needClose || a.isClosed
+	}
+
+	updated := updateClosed(c, n.replace)
+	if updated == nil && n.needClose {
+		updated = &CloseDef{}
+	}
+
+	// TODO retrieve from env.
+
+	if err := n.getErr(); err != nil {
+		if b, _ := n.node.Value.(*adt.Bottom); b != nil {
+			err = adt.CombineErrors(nil, b, err)
+		}
+		n.node.Value = err
+		// TODO: add return: if evaluation of arcs is important it can be done
+		// later. Logically we're done.
+	}
+
+	m := &acceptor{
+		tree:     updated,
+		fields:   n.optionals,
+		isClosed: n.needClose,
+		openList: n.openList,
+		isList:   n.node.IsList(),
+	}
+	if updated != nil || len(n.optionals) > 0 {
+		n.node.Closed = m
+	}
+
+	// Visit arcs recursively to validate and compute error.
+	for _, a := range n.node.Arcs {
+		if updated != nil {
+			a.Closed = m
+		}
+		if updated != nil && m.isClosed {
+			if err := m.verifyArcAllowed(n.ctx, a.Label); err != nil {
+				n.node.Value = err
+			}
+			// TODO: use continue to not process already failed fields,
+			// or at least don't record recursive error.
+			// continue
+		}
+		// Call UpdateStatus here to be absolutely sure the status is set
+		// correctly and that we are not regressing.
+		n.node.UpdateStatus(adt.EvaluatingArcs)
+		n.eval.Unify(ctx, a, adt.Finalized)
+		if err, _ := a.Value.(*adt.Bottom); err != nil {
+			n.node.AddChildError(err)
+		}
+	}
+
+	n.node.UpdateStatus(adt.Finalized)
+}
+
+// TODO: this is now a sentinel. Use a user-facing error that traces where
+// the cycle originates.
+var cycle = &adt.Bottom{
+	Err:  errors.Newf(token.NoPos, "cycle error"),
+	Code: adt.CycleError,
+}
+
+func isEvaluating(v *adt.Vertex) bool {
+	isCycle := v.Status() == adt.Evaluating
+	if isCycle != (v.Value == cycle) {
+		panic(fmt.Sprintf("cycle data of sync %d vs %#v", v.Status(), v.Value))
+	}
+	return isCycle
+}
+
+type nodeShared struct {
+	eval *Evaluator
+	ctx  *adt.OpContext
+	sub  []*adt.Environment // Environment cache
+	node *adt.Vertex
+
+	// Disjunction handling
+	disjunct   *adt.Disjunction
+	resultNode *nodeContext
+	result_    adt.Vertex
+	stack      []int
+}
+
+func (n *nodeShared) result() *adt.Vertex {
+	return &n.result_
+}
+
+func (n *nodeShared) setResult(v *adt.Vertex) {
+	n.result_ = *v
+}
+
+func (n *nodeShared) hasResult() bool {
+	return n.resultNode != nil //|| n.hasResult_
+	// return n.resultNode != nil || n.hasResult_
+}
+
+func (n *nodeShared) done() bool {
+	// if d := n.disjunct; d == nil || len(n.disjunct.Values) == 0 {
+	// 	return false
+	// }
+	if n.resultNode == nil {
+		return false
+	}
+	return n.resultNode.done()
+}
+
+func (n *nodeShared) hasDisjunction() bool {
+	if n.resultNode == nil {
+		return false
+	}
+	return len(n.resultNode.disjunctions) > 0
+}
+
+func (n *nodeShared) isDefault() bool {
+	if n.resultNode == nil {
+		return false
+	}
+	return n.resultNode.defaultMode == isDefault
+}
+
+// A nodeContext is used to collate all conjuncts of a value to facilitate
+// unification. Conceptually order of unification does not matter. However,
+// order has relevance when performing checks of non-monotic properities. Such
+// checks should only be performed once the full value is known.
+type nodeContext struct {
+	*nodeShared
+
+	// TODO:
+	// filter *adt.Vertex a subset of composite with concrete fields for
+	// bloom-like filtering of disjuncts. We should first verify, however,
+	// whether some breath-first search gives sufficient performance, as this
+	// should already ensure a quick-fail for struct disjunctions with
+	// discriminators.
+
+	// Current value (may be under construction)
+	scalar adt.Value // TODO: use Value in node.
+
+	// Concrete conjuncts
+	kind       adt.Kind
+	lowerBound *adt.BoundValue // > or >=
+	upperBound *adt.BoundValue // < or <=
+	checks     []adt.Validator // BuiltinValidator, other bound values.
+	errs       *adt.Bottom
+	incomplete *adt.Bottom
+
+	// Struct information
+	dynamicFields []envDynamic
+	ifClauses     []envYield
+	forClauses    []envYield
+	optionals     []fieldSet // env + field
+	// NeedClose:
+	// - node starts definition
+	// - embeds a definition
+	// - parent node is closing
+	needClose bool
+	openList  bool
+	isStruct  bool
+	hasTop    bool
+	newClose  *CloseDef
+	// closeID   uint32 // from parent, or if not exist, new if introducing a def.
+	replace map[uint32]*CloseDef
+
+	// Expression conjuncts
+	lists  []envList
+	vLists []*adt.Vertex
+	exprs  []conjunct
+
+	// Disjunction handling
+	disjunctions []envDisjunct
+	defaultMode  defaultMode
+	isFinal      bool
+}
+
+func (n *nodeContext) done() bool {
+	return len(n.dynamicFields) == 0 &&
+		len(n.ifClauses) == 0 &&
+		len(n.forClauses) == 0 &&
+		len(n.exprs) == 0
+}
+
+// hasErr is used to determine if an evaluation path, for instance a single
+// path after expanding all disjunctions, has an error.
+func (n *nodeContext) hasErr() bool {
+	if n.node.ChildErrors != nil {
+		return true
+	}
+	if n.node.Status() > adt.Evaluating && n.node.IsErr() {
+		return true
+	}
+	return n.ctx.HasErr() || n.errs != nil
+}
+
+func (n *nodeContext) getErr() *adt.Bottom {
+	n.errs = adt.CombineErrors(nil, n.errs, n.ctx.Err())
+	return n.errs
+}
+
+// getValidators sets the vertex' Value in case there was no concrete value.
+func (n *nodeContext) getValidators() adt.Value {
+	ctx := n.ctx
+
+	a := []adt.Value{}
+	// if n.node.Value != nil {
+	// 	a = append(a, n.node.Value)
+	// }
+	kind := adt.TopKind
+	if n.lowerBound != nil {
+		a = append(a, n.lowerBound)
+		kind &= n.lowerBound.Kind()
+	}
+	if n.upperBound != nil {
+		a = append(a, n.upperBound)
+		kind &= n.upperBound.Kind()
+	}
+	for _, c := range n.checks {
+		// Drop !=x if x is out of bounds with another bound.
+		if b, _ := c.(*adt.BoundValue); b != nil && b.Op == adt.NotEqualOp {
+			if n.upperBound != nil &&
+				adt.SimplifyBounds(ctx, n.kind, n.upperBound, b) != nil {
+				continue
+			}
+			if n.lowerBound != nil &&
+				adt.SimplifyBounds(ctx, n.kind, n.lowerBound, b) != nil {
+				continue
+			}
+		}
+		a = append(a, c)
+		kind &= c.Kind()
+	}
+	if kind&^n.kind != 0 {
+		a = append(a, &adt.BasicType{K: n.kind})
+	}
+
+	var v adt.Value
+	switch len(a) {
+	case 0:
+		// Src is the combined input.
+		v = &adt.BasicType{K: n.kind}
+
+		// TODO: Change to isStruct?
+		if len(n.node.Structs) > 0 {
+			// n.isStruct = true
+			v = structSentinel
+
+		}
+
+	case 1:
+		v = a[0].(adt.Value)
+
+	default:
+		v = &adt.Conjunction{Values: a}
+	}
+
+	return v
+}
+
+func (n *nodeContext) maybeSetCache() {
+	if n.node.Status() > adt.Evaluating { // n.node.Value != nil
+		return
+	}
+	if n.scalar != nil {
+		n.node.SetValue(n.ctx, adt.Partial, n.scalar)
+	}
+	if n.errs != nil {
+		n.node.SetValue(n.ctx, adt.Partial, n.errs)
+	}
+}
+
+type conjunct struct {
+	adt.Conjunct
+	closeID uint32
+	top     bool
+}
+
+type envDynamic struct {
+	env   *adt.Environment
+	field *adt.DynamicField
+}
+
+type envYield struct {
+	env   *adt.Environment
+	yield adt.Yielder
+}
+
+type envList struct {
+	env     *adt.Environment
+	list    *adt.ListLit
+	n       int64 // recorded length after evaluator
+	elipsis *adt.Ellipsis
+}
+
+func (n *nodeContext) addBottom(b *adt.Bottom) {
+	n.errs = adt.CombineErrors(nil, n.errs, b)
+}
+
+func (n *nodeContext) addErr(err errors.Error) {
+	if err != nil {
+		n.errs = adt.CombineErrors(nil, n.errs, &adt.Bottom{
+			Err: err,
+		})
+	}
+}
+
+// addExprConjuncts will attempt to evaluate an adt.Expr and insert the value
+// into the nodeContext if successful or queue it for later evaluation if it is
+// incomplete or is not value.
+func (n *nodeContext) addExprConjunct(v adt.Conjunct, def uint32, top bool) {
+	env := v.Env
+	if env != nil && env.CloseID != def {
+		e := *env
+		e.CloseID = def
+		env = &e
+	}
+	switch x := v.Expr().(type) {
+	case adt.Value:
+		n.addValueConjunct(env, x)
+
+	case *adt.BinaryExpr:
+		if x.Op == adt.AndOp {
+			n.addExprConjunct(adt.MakeConjunct(env, x.X), def, false)
+			n.addExprConjunct(adt.MakeConjunct(env, x.Y), def, false)
+		} else {
+			n.evalExpr(v, def, top)
+		}
+
+	case *adt.StructLit:
+		n.addStruct(env, x, def, top)
+
+	case *adt.ListLit:
+		n.lists = append(n.lists, envList{env: env, list: x})
+
+	case *adt.DisjunctionExpr:
+		if n.disjunctions != nil {
+			_ = n.disjunctions
+		}
+		n.addDisjunction(env, x, def, top)
+
+	default:
+		// Must be Resolver or Evaluator.
+		n.evalExpr(v, def, top)
+	}
+
+	if top {
+		n.updateReplace(v.Env)
+	}
+}
+
+// evalExpr is only called by addExprConjunct.
+func (n *nodeContext) evalExpr(v adt.Conjunct, closeID uint32, top bool) {
+	// Require an Environment.
+	ctx := n.ctx
+
+	switch x := v.Expr().(type) {
+	case adt.Resolver:
+		arc, err := ctx.Resolve(v.Env, x)
+		if err != nil {
+			if err.IsIncomplete() {
+				n.incomplete = adt.CombineErrors(nil, n.incomplete, err)
+			} else {
+				n.addBottom(err)
+				break
+			}
+		}
+		if arc == nil {
+			n.exprs = append(n.exprs, conjunct{v, closeID, top})
+			break
+		}
+
+		// If this is a cycle error, we have reached a fixed point and adding
+		// conjuncts at this point will not change the value. Also, continuing
+		// to pursue this value will result in an infinite loop.
+		//
+		// TODO: add a mechanism so that the computation will only have to be
+		// one once?
+		if isEvaluating(arc) {
+			break
+		}
+
+		// TODO: detect structural cycles here. A structural cycle can occur
+		// if it is not a reference cycle, but refers to a parent. node.
+		// This should only be allowed if it is unified with a finite structure.
+
+		if arc.Label.IsDef() {
+			n.insertClosed(arc)
+		} else {
+			for _, a := range arc.Conjuncts {
+				n.addExprConjunct(a, closeID, top)
+			}
+		}
+
+	case adt.Evaluator:
+		// adt.Interpolation, adt.UnaryExpr, adt.BinaryExpr, adt.CallExpr
+		val, complete := ctx.Evaluate(v.Env, v.Expr())
+		if !complete {
+			n.exprs = append(n.exprs, conjunct{v, closeID, top})
+			break
+		}
+
+		if v, ok := val.(*adt.Vertex); ok {
+			// Handle generated disjunctions (as in the 'or' builtin).
+			// These come as a Vertex, but should not be added as a value.
+			b, ok := v.Value.(*adt.Bottom)
+			if ok && b.IsIncomplete() && len(v.Conjuncts) > 0 {
+				for _, c := range v.Conjuncts {
+					n.addExprConjunct(c, closeID, top)
+				}
+				break
+			}
+		}
+
+		// TODO: insert in vertex as well
+		n.addValueConjunct(v.Env, val)
+
+	default:
+		panic(fmt.Sprintf("unknown expression of type %T", x))
+	}
+}
+
+func (n *nodeContext) insertClosed(arc *adt.Vertex) {
+	id := n.eval.nextID()
+	n.needClose = true
+
+	current := n.newClose
+	n.newClose = nil
+
+	for _, a := range arc.Conjuncts {
+		n.addExprConjunct(a, id, false)
+	}
+
+	current, n.newClose = n.newClose, current
+
+	if current == nil {
+		current = &CloseDef{ID: id}
+	}
+	n.addAnd(current)
+}
+
+func (n *nodeContext) addValueConjunct(env *adt.Environment, v adt.Value) {
+	if x, ok := v.(*adt.Vertex); ok {
+		needClose := false
+		if isStruct(x) {
+			n.isStruct = true
+			// TODO: find better way to mark as struct.
+			// For instance, we may want to add a faux
+			// Structlit for topological sort.
+			// return
+
+			if x.IsClosed(n.ctx) {
+				needClose = true
+			}
+
+			n.node.AddStructs(x.Structs...)
+		}
+
+		if len(x.Conjuncts) > 0 {
+			if needClose {
+				n.insertClosed(x)
+				return
+			}
+			for _, c := range x.Conjuncts {
+				n.addExprConjunct(c, 0, false) // Pass from eval
+			}
+			return
+		}
+
+		if x.IsList() {
+			n.vLists = append(n.vLists, x)
+			return
+		}
+
+		// TODO: evaluate value?
+		switch v := x.Value.(type) {
+		case *adt.ListMarker:
+			panic("unreachable")
+
+		case *adt.StructMarker:
+			for _, a := range x.Arcs {
+				// TODO, insert here as
+				n.insertField(a.Label, adt.MakeConjunct(nil, a))
+				// sub, _ := n.node.GetArc(a.Label)
+				// sub.Add(a)
+			}
+
+		default:
+			n.addValueConjunct(env, v)
+
+			for _, a := range x.Arcs {
+				// TODO, insert here as
+				n.insertField(a.Label, adt.MakeConjunct(nil, a))
+				// sub, _ := n.node.GetArc(a.Label)
+				// sub.Add(a)
+			}
+		}
+
+		return
+		// TODO: Use the Closer to close other fields as well?
+	}
+
+	if b, ok := v.(*adt.Bottom); ok {
+		n.addBottom(b)
+		return
+	}
+
+	ctx := n.ctx
+	kind := n.kind & v.Kind()
+	if kind == adt.BottomKind {
+		// TODO: how to get other conflicting values?
+		n.addErr(errors.Newf(token.NoPos,
+			"invalid value %s (mismatched types %s and %s)",
+			ctx.Str(v), v.Kind(), n.kind))
+		return
+	}
+	n.kind = kind
+
+	switch x := v.(type) {
+	case *adt.Disjunction:
+		n.addDisjunctionValue(env, x, 0, true)
+
+	case *adt.Conjunction:
+		for _, x := range x.Values {
+			n.addValueConjunct(env, x)
+		}
+
+	case *adt.Top:
+		n.hasTop = true
+		// TODO: Is this correct. Needed for elipsis, but not sure for others.
+		n.optionals = append(n.optionals, fieldSet{env: env, isOpen: true})
+
+	case *adt.BasicType:
+
+	case *adt.BoundValue:
+		switch x.Op {
+		case adt.LessThanOp, adt.LessEqualOp:
+			if y := n.upperBound; y != nil {
+				n.upperBound = nil
+				n.addValueConjunct(env, adt.SimplifyBounds(ctx, n.kind, x, y))
+				return
+			}
+			n.upperBound = x
+
+		case adt.GreaterThanOp, adt.GreaterEqualOp:
+			if y := n.lowerBound; y != nil {
+				n.lowerBound = nil
+				n.addValueConjunct(env, adt.SimplifyBounds(ctx, n.kind, x, y))
+				return
+			}
+			n.lowerBound = x
+
+		case adt.EqualOp, adt.NotEqualOp, adt.MatchOp, adt.NotMatchOp:
+			n.checks = append(n.checks, x)
+			return
+		}
+
+	case adt.Validator:
+		n.checks = append(n.checks, x)
+
+	case *adt.Vertex:
+	// handled above.
+
+	case adt.Value: // *NullLit, *BoolLit, *NumLit, *StringLit, *BytesLit
+		if y := n.scalar; y != nil {
+			if b, ok := adt.BinOp(ctx, adt.EqualOp, x, y).(*adt.Bool); !ok || !b.B {
+				n.addErr(errors.Newf(ctx.Pos(), "incompatible values %s and %s", ctx.Str(x), ctx.Str(y)))
+			}
+			// TODO: do we need to explicitly add again?
+			// n.scalar = nil
+			// n.addValueConjunct(c, adt.BinOp(c, adt.EqualOp, x, y))
+			break
+		}
+		n.scalar = x
+
+	default:
+		panic(fmt.Sprintf("unknown value type %T", x))
+	}
+
+	if n.lowerBound != nil && n.upperBound != nil {
+		if u := adt.SimplifyBounds(ctx, n.kind, n.lowerBound, n.upperBound); u != nil {
+			n.lowerBound = nil
+			n.upperBound = nil
+			n.addValueConjunct(env, u)
+		}
+	}
+}
+
+// addStruct collates the declarations of a struct.
+//
+// addStruct fulfills two additional pivotal functions:
+//   1) Implement vertex unification (this happends through De Bruijn indices
+//      combined with proper set up of Environments).
+//   2) Implied closedness for definitions.
+//
+func (n *nodeContext) addStruct(
+	env *adt.Environment,
+	s *adt.StructLit,
+	newDef uint32,
+	top bool) {
+
+	ctx := n.ctx
+	n.node.AddStructs(s)
+
+	// Inherit closeID from environment, unless this is a new definition.
+	closeID := newDef
+	if closeID == 0 && env != nil {
+		closeID = env.CloseID
+	}
+
+	// NOTE: This is a crucial point in the code:
+	// Unification derferencing happens here. The child nodes are set to
+	// an Environment linked to the current node. Together with the De Bruijn
+	// indices, this determines to which Vertex a reference resolves.
+
+	// TODO(perf): consider using environment cache:
+	// var childEnv *adt.Environment
+	// for _, s := range n.nodeCache.sub {
+	// 	if s.Up == env {
+	// 		childEnv = s
+	// 	}
+	// }
+	childEnv := &adt.Environment{
+		Up:      env,
+		Vertex:  n.node,
+		CloseID: closeID,
+	}
+
+	var hasOther, hasBulk adt.Node
+
+	opt := fieldSet{env: childEnv}
+
+	for _, d := range s.Decls {
+		switch x := d.(type) {
+		case *adt.Field:
+			opt.MarkField(ctx, x)
+			// handle in next iteration.
+
+		case *adt.OptionalField:
+			opt.AddOptional(ctx, x)
+
+		case *adt.DynamicField:
+			hasOther = x
+			n.dynamicFields = append(n.dynamicFields, envDynamic{childEnv, x})
+			opt.AddDynamic(ctx, childEnv, x)
+
+		case *adt.ForClause:
+			hasOther = x
+			n.forClauses = append(n.forClauses, envYield{childEnv, x})
+
+		case adt.Yielder:
+			hasOther = x
+			n.ifClauses = append(n.ifClauses, envYield{childEnv, x})
+
+		case adt.Expr:
+			// push and opo embedding type.
+			id := n.eval.nextID()
+
+			current := n.newClose
+			n.newClose = nil
+
+			hasOther = x
+			n.addExprConjunct(adt.MakeConjunct(childEnv, x), id, false)
+
+			current, n.newClose = n.newClose, current
+
+			if current == nil {
+				current = &CloseDef{ID: id} // TODO: isClosed?
+			} else {
+				// n.needClose = true
+			}
+			n.addOr(closeID, current)
+
+		case *adt.BulkOptionalField:
+			hasBulk = x
+			opt.AddBulk(ctx, x)
+
+		case *adt.Ellipsis:
+			hasBulk = x
+			opt.AddEllipsis(ctx, x)
+
+		default:
+			panic("unreachable")
+		}
+	}
+
+	if hasBulk != nil && hasOther != nil {
+		n.addErr(errors.Newf(token.NoPos, "cannot mix bulk optional fields with dynamic fields, embeddings, or comprehensions within the same struct"))
+	}
+
+	// Apply existing fields
+	for _, arc := range n.node.Arcs {
+		// Reuse adt.Acceptor interface.
+		opt.MatchAndInsert(ctx, arc)
+	}
+
+	n.optionals = append(n.optionals, opt)
+
+	for _, d := range s.Decls {
+		switch x := d.(type) {
+		case *adt.Field:
+			n.insertField(x.Label, adt.MakeConjunct(childEnv, x))
+		}
+	}
+}
+
+func (n *nodeContext) insertField(f adt.Feature, x adt.Conjunct) *adt.Vertex {
+	ctx := n.ctx
+	arc, isNew := n.node.GetArc(f)
+
+	if f.IsString() {
+		n.isStruct = true
+	}
+
+	// TODO: disallow adding conjuncts when cache set?
+	arc.AddConjunct(x)
+
+	if isNew {
+		for _, o := range n.optionals {
+			o.MatchAndInsert(ctx, arc)
+		}
+	}
+	return arc
+}
+
+// expandOne adds dynamic fields to a node until a fixed point is reached.
+// On each iteration, dynamic fields that cannot resolve due to incomplete
+// values are skipped. They will be retried on the next iteration until no
+// progress can be made. Note that a dynamic field may add more dynamic fields.
+//
+// forClauses are processed after all other clauses. A struct may be referenced
+// before it is complete, meaning that fields added by other forms of injection
+// may influence the result of a for clause _after_ it has already been
+// processed. We could instead detect such insertion and feed it to the
+// ForClause to generate another entry or have the for clause be recomputed.
+// This seems to be too complicated and lead to iffy edge cases.
+// TODO(error): detect when a field is added to a struct that is already used
+// in a for clause.
+func (n *nodeContext) expandOne() (done bool) {
+	if n.done() {
+		return false
+	}
+
+	var progress bool
+
+	if progress = n.injectDynamic(); progress {
+		return true
+	}
+
+	if n.ifClauses, progress = n.injectEmbedded(n.ifClauses); progress {
+		return true
+	}
+
+	if n.forClauses, progress = n.injectEmbedded(n.forClauses); progress {
+		return true
+	}
+
+	// Do expressions after comprehensions, as comprehensions can never
+	// refer to embedded scalars, whereas expressions may refer to generated
+	// fields if we were to allow attributes to be defined alongside
+	// scalars.
+	exprs := n.exprs
+	n.exprs = n.exprs[:0]
+	for _, x := range exprs {
+		n.addExprConjunct(x.Conjunct, x.closeID, x.top)
+
+		// collect and and or
+	}
+	if len(n.exprs) < len(exprs) {
+		return true
+	}
+
+	// No progress, report error later if needed: unification with
+	// disjuncts may resolve this later later on.
+	return false
+}
+
+// injectDynamic evaluates and inserts dynamic declarations.
+func (n *nodeContext) injectDynamic() (progress bool) {
+	ctx := n.ctx
+	k := 0
+
+	a := n.dynamicFields
+	for _, d := range n.dynamicFields {
+		var f adt.Feature
+		v, complete := ctx.Evaluate(d.env, d.field.Key)
+		if !complete {
+			a[k] = d
+			k++
+			continue
+		}
+		if b, _ := v.(*adt.Bottom); b != nil {
+			n.addValueConjunct(nil, b)
+			continue
+		}
+		f = ctx.Label(v)
+		n.insertField(f, adt.MakeConjunct(d.env, d.field))
+	}
+
+	progress = k < len(n.dynamicFields)
+
+	n.dynamicFields = a[:k]
+
+	return progress
+}
+
+// injectEmbedded evaluates and inserts embeddings. It first evaluates all
+// embeddings before inserting the results to ensure that the order of
+// evaluation does not matter.
+func (n *nodeContext) injectEmbedded(all []envYield) (a []envYield, progress bool) {
+	ctx := n.ctx
+	type envStruct struct {
+		env *adt.Environment
+		s   *adt.StructLit
+	}
+	var sa []envStruct
+	f := func(env *adt.Environment, st *adt.StructLit) {
+		sa = append(sa, envStruct{env, st})
+	}
+
+	k := 0
+	for _, d := range all {
+		sa = sa[:0]
+
+		if err := ctx.Yield(d.env, d.yield, f); err != nil {
+			if err.IsIncomplete() {
+				all[k] = d
+				k++
+			} else {
+				// continue to collect other errors.
+				n.addBottom(err)
+			}
+			continue
+		}
+
+		for _, st := range sa {
+			n.addStruct(st.env, st.s, 0, true)
+		}
+	}
+
+	return all[:k], k < len(all)
+}
+
+// addLists
+//
+// TODO: association arrays:
+// If an association array marker was present in a struct, create a struct node
+// instead of a list node. In either case, a node may only have list fields
+// or struct fields and not both.
+//
+// addLists should be run after the fixpoint expansion:
+//    - it enforces that comprehensions may not refer to the list itself
+//    - there may be no other fields within the list.
+//
+// TODO(embeddedScalars): for embedded scalars, there should be another pass
+// of evaluation expressions after expanding lists.
+func (n *nodeContext) addLists(c *adt.OpContext) {
+	if len(n.lists) == 0 && len(n.vLists) == 0 {
+		return
+	}
+
+	for _, a := range n.node.Arcs {
+		if t := a.Label.Typ(); t == adt.StringLabel {
+			n.addErr(errors.Newf(token.NoPos, "conflicting types list and struct"))
+		}
+	}
+
+	// fmt.Println(len(n.lists), "ELNE")
+
+	isOpen := true
+	max := 0
+	var maxNode adt.Expr
+
+	for _, l := range n.vLists {
+		elems := l.Elems()
+		isClosed := l.IsClosed(c)
+
+		switch {
+		case len(elems) < max:
+			if isClosed {
+				n.invalidListLength(len(elems), max, l, maxNode)
+				continue
+			}
+
+		case len(elems) > max:
+			if !isOpen {
+				n.invalidListLength(max, len(elems), maxNode, l)
+				continue
+			}
+			isOpen = !isClosed
+			max = len(elems)
+			maxNode = l
+
+		case isClosed:
+			isOpen = false
+			maxNode = l
+		}
+
+		for _, a := range elems {
+			if a.Conjuncts == nil {
+				n.insertField(a.Label, adt.MakeConjunct(nil, a.Value))
+				continue
+			}
+			for _, c := range a.Conjuncts {
+				n.insertField(a.Label, c)
+			}
+		}
+	}
+
+outer:
+	for i, l := range n.lists {
+		index := int64(0)
+		hasComprehension := false
+		for j, elem := range l.list.Elems {
+			switch x := elem.(type) {
+			case adt.Yielder:
+				err := c.Yield(l.env, x, func(e *adt.Environment, st *adt.StructLit) {
+					label, err := adt.MakeLabel(x.Source(), index, adt.IntLabel)
+					n.addErr(err)
+					index++
+					n.insertField(label, adt.MakeConjunct(e, st))
+				})
+				hasComprehension = true
+				if err.IsIncomplete() {
+
+				}
+
+			case *adt.Ellipsis:
+				if j != len(l.list.Elems)-1 {
+					n.addErr(errors.Newf(token.NoPos,
+						"ellipsis must be last element in list"))
+				}
+
+				n.lists[i].elipsis = x
+
+			default:
+				label, err := adt.MakeLabel(x.Source(), index, adt.IntLabel)
+				n.addErr(err)
+				index++ // TODO: don't use insertField.
+				n.insertField(label, adt.MakeConjunct(l.env, x))
+			}
+
+			// Terminate early n case of runaway comprehension.
+			if !isOpen && int(index) > max {
+				n.invalidListLength(max, int(index), maxNode, l.list)
+				continue outer
+			}
+		}
+
+		switch closed := n.lists[i].elipsis == nil; {
+		case int(index) < max:
+			if closed {
+				n.invalidListLength(int(index), max, l.list, maxNode)
+				continue
+			}
+
+		case int(index) > max,
+			closed && isOpen,
+			(!closed == isOpen) && !hasComprehension:
+			max = int(index)
+			maxNode = l.list
+			isOpen = !closed
+		}
+
+		n.lists[i].n = index
+	}
+
+	// add additionalItem values to list and construct optionals.
+	elems := n.node.Elems()
+	for _, l := range n.vLists {
+		a, _ := l.Closed.(*acceptor)
+		if a == nil {
+			continue
+		}
+
+		newElems := l.Elems()
+		if len(newElems) >= len(elems) {
+			continue // error generated earlier, if applicable.
+		}
+
+		n.optionals = append(n.optionals, a.fields...)
+
+		for _, arc := range elems[len(newElems):] {
+			l.MatchAndInsert(c, arc)
+		}
+	}
+
+	for _, l := range n.lists {
+		if l.elipsis == nil {
+			continue
+		}
+
+		f := fieldSet{env: l.env}
+		f.AddEllipsis(c, l.elipsis)
+
+		n.optionals = append(n.optionals, f)
+
+		for _, arc := range elems[l.n:] {
+			f.MatchAndInsert(c, arc)
+		}
+	}
+
+	sources := []ast.Expr{}
+	// Add conjuncts for additional items.
+	for _, l := range n.lists {
+		if l.elipsis == nil {
+			continue
+		}
+		if src, _ := l.elipsis.Source().(ast.Expr); src != nil {
+			sources = append(sources, src)
+		}
+	}
+
+	n.openList = isOpen
+
+	n.node.SetValue(c, adt.Partial, &adt.ListMarker{
+		Src:    ast.NewBinExpr(token.AND, sources...),
+		IsOpen: isOpen,
+	})
+}
+
+func (n *nodeContext) invalidListLength(na, nb int, a, b adt.Expr) {
+	n.addErr(errors.Newf(n.ctx.Pos(),
+		"incompatible list lengths (%d and %d)", na, nb))
+}