pkg: add generated core package

and internal qgo tool to generate them

Change-Id: Ic03dc27262d8769f3dc3cd56fa11d77ee0b68dc8
diff --git a/pkg/math/math.go b/pkg/math/math.go
new file mode 100644
index 0000000..c20e405
--- /dev/null
+++ b/pkg/math/math.go
@@ -0,0 +1,522 @@
+// Copyright 2018 The CUE Authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//     http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:generate qgo -exclude=32,^Next,^Max,^Smallest,^Min,bits,Inf,NaN,Round,Trunc,Ceil,Floor$ extract math
+
+package math
+
+import "math"
+
+// Abs returns the absolute value of x.
+//
+// Special cases are:
+//	Abs(±Inf) = +Inf
+//	Abs(NaN) = NaN
+func Abs(x float64) float64 {
+	return math.Abs(x)
+}
+
+// Acosh returns the inverse hyperbolic cosine of x.
+//
+// Special cases are:
+//	Acosh(+Inf) = +Inf
+//	Acosh(x) = NaN if x < 1
+//	Acosh(NaN) = NaN
+func Acosh(x float64) float64 {
+	return math.Acosh(x)
+}
+
+// Asin returns the arcsine, in radians, of x.
+//
+// Special cases are:
+//	Asin(±0) = ±0
+//	Asin(x) = NaN if x < -1 or x > 1
+func Asin(x float64) float64 {
+	return math.Asin(x)
+}
+
+// Acos returns the arccosine, in radians, of x.
+//
+// Special case is:
+//	Acos(x) = NaN if x < -1 or x > 1
+func Acos(x float64) float64 {
+	return math.Acos(x)
+}
+
+// Asinh returns the inverse hyperbolic sine of x.
+//
+// Special cases are:
+//	Asinh(±0) = ±0
+//	Asinh(±Inf) = ±Inf
+//	Asinh(NaN) = NaN
+func Asinh(x float64) float64 {
+	return math.Asinh(x)
+}
+
+// Atan returns the arctangent, in radians, of x.
+//
+// Special cases are:
+//      Atan(±0) = ±0
+//      Atan(±Inf) = ±Pi/2
+func Atan(x float64) float64 {
+	return math.Atan(x)
+}
+
+// Atan2 returns the arc tangent of y/x, using
+// the signs of the two to determine the quadrant
+// of the return value.
+//
+// Special cases are (in order):
+//	Atan2(y, NaN) = NaN
+//	Atan2(NaN, x) = NaN
+//	Atan2(+0, x>=0) = +0
+//	Atan2(-0, x>=0) = -0
+//	Atan2(+0, x<=-0) = +Pi
+//	Atan2(-0, x<=-0) = -Pi
+//	Atan2(y>0, 0) = +Pi/2
+//	Atan2(y<0, 0) = -Pi/2
+//	Atan2(+Inf, +Inf) = +Pi/4
+//	Atan2(-Inf, +Inf) = -Pi/4
+//	Atan2(+Inf, -Inf) = 3Pi/4
+//	Atan2(-Inf, -Inf) = -3Pi/4
+//	Atan2(y, +Inf) = 0
+//	Atan2(y>0, -Inf) = +Pi
+//	Atan2(y<0, -Inf) = -Pi
+//	Atan2(+Inf, x) = +Pi/2
+//	Atan2(-Inf, x) = -Pi/2
+func Atan2(y, x float64) float64 {
+	return math.Atan2(y, x)
+}
+
+// Atanh returns the inverse hyperbolic tangent of x.
+//
+// Special cases are:
+//	Atanh(1) = +Inf
+//	Atanh(±0) = ±0
+//	Atanh(-1) = -Inf
+//	Atanh(x) = NaN if x < -1 or x > 1
+//	Atanh(NaN) = NaN
+func Atanh(x float64) float64 {
+	return math.Atanh(x)
+}
+
+// Cbrt returns the cube root of x.
+//
+// Special cases are:
+//	Cbrt(±0) = ±0
+//	Cbrt(±Inf) = ±Inf
+//	Cbrt(NaN) = NaN
+func Cbrt(x float64) float64 {
+	return math.Cbrt(x)
+}
+
+// Mathematical constants.
+const (
+	E   = 2.71828182845904523536028747135266249775724709369995957496696763 // https://oeis.org/A001113
+	Pi  = 3.14159265358979323846264338327950288419716939937510582097494459 // https://oeis.org/A000796
+	Phi = 1.61803398874989484820458683436563811772030917980576286213544862 // https://oeis.org/A001622
+
+	Sqrt2   = 1.41421356237309504880168872420969807856967187537694807317667974 // https://oeis.org/A002193
+	SqrtE   = 1.64872127070012814684865078781416357165377610071014801157507931 // https://oeis.org/A019774
+	SqrtPi  = 1.77245385090551602729816748334114518279754945612238712821380779 // https://oeis.org/A002161
+	SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038 // https://oeis.org/A139339
+
+	Ln2    = 0.693147180559945309417232121458176568075500134360255254120680009 // https://oeis.org/A002162
+	Log2E  = 1000000000000000000000000000000000000000000000000000000000000000 / 693147180559945309417232121458176568075500134360255254120680009
+	Ln10   = 2.30258509299404568401799145468436420760110148862877297603332790 // https://oeis.org/A002392
+	Log10E = 10000000000000000000000000000000000000000000000000000000000000 / 23025850929940456840179914546843642076011014886287729760333279
+)
+
+// Copysign returns a value with the magnitude
+// of x and the sign of y.
+func Copysign(x, y float64) float64 {
+	return math.Copysign(x, y)
+}
+
+// Dim returns the maximum of x-y or 0.
+//
+// Special cases are:
+//	Dim(+Inf, +Inf) = NaN
+//	Dim(-Inf, -Inf) = NaN
+//	Dim(x, NaN) = Dim(NaN, x) = NaN
+func Dim(x, y float64) float64 {
+	return math.Dim(x, y)
+}
+
+// Erf returns the error function of x.
+//
+// Special cases are:
+//	Erf(+Inf) = 1
+//	Erf(-Inf) = -1
+//	Erf(NaN) = NaN
+func Erf(x float64) float64 {
+	return math.Erf(x)
+}
+
+// Erfc returns the complementary error function of x.
+//
+// Special cases are:
+//	Erfc(+Inf) = 0
+//	Erfc(-Inf) = 2
+//	Erfc(NaN) = NaN
+func Erfc(x float64) float64 {
+	return math.Erfc(x)
+}
+
+// Erfinv returns the inverse error function of x.
+//
+// Special cases are:
+//	Erfinv(1) = +Inf
+//	Erfinv(-1) = -Inf
+//	Erfinv(x) = NaN if x < -1 or x > 1
+//	Erfinv(NaN) = NaN
+func Erfinv(x float64) float64 {
+	return math.Erfinv(x)
+}
+
+// Erfcinv returns the inverse of Erfc(x).
+//
+// Special cases are:
+//	Erfcinv(0) = +Inf
+//	Erfcinv(2) = -Inf
+//	Erfcinv(x) = NaN if x < 0 or x > 2
+//	Erfcinv(NaN) = NaN
+func Erfcinv(x float64) float64 {
+	return math.Erfcinv(x)
+}
+
+// Exp returns e**x, the base-e exponential of x.
+//
+// Special cases are:
+//	Exp(+Inf) = +Inf
+//	Exp(NaN) = NaN
+// Very large values overflow to 0 or +Inf.
+// Very small values underflow to 1.
+func Exp(x float64) float64 {
+	return math.Exp(x)
+}
+
+// Exp2 returns 2**x, the base-2 exponential of x.
+//
+// Special cases are the same as Exp.
+func Exp2(x float64) float64 {
+	return math.Exp2(x)
+}
+
+// Expm1 returns e**x - 1, the base-e exponential of x minus 1.
+// It is more accurate than Exp(x) - 1 when x is near zero.
+//
+// Special cases are:
+//	Expm1(+Inf) = +Inf
+//	Expm1(-Inf) = -1
+//	Expm1(NaN) = NaN
+// Very large values overflow to -1 or +Inf.
+func Expm1(x float64) float64 {
+	return math.Expm1(x)
+}
+
+// Gamma returns the Gamma function of x.
+//
+// Special cases are:
+//	Gamma(+Inf) = +Inf
+//	Gamma(+0) = +Inf
+//	Gamma(-0) = -Inf
+//	Gamma(x) = NaN for integer x < 0
+//	Gamma(-Inf) = NaN
+//	Gamma(NaN) = NaN
+func Gamma(x float64) float64 {
+	return math.Gamma(x)
+}
+
+// Hypot returns Sqrt(p*p + q*q), taking care to avoid
+// unnecessary overflow and underflow.
+//
+// Special cases are:
+//	Hypot(±Inf, q) = +Inf
+//	Hypot(p, ±Inf) = +Inf
+//	Hypot(NaN, q) = NaN
+//	Hypot(p, NaN) = NaN
+func Hypot(p, q float64) float64 {
+	return math.Hypot(p, q)
+}
+
+// J0 returns the order-zero Bessel function of the first kind.
+//
+// Special cases are:
+//	J0(±Inf) = 0
+//	J0(0) = 1
+//	J0(NaN) = NaN
+func J0(x float64) float64 {
+	return math.J0(x)
+}
+
+// Y0 returns the order-zero Bessel function of the second kind.
+//
+// Special cases are:
+//	Y0(+Inf) = 0
+//	Y0(0) = -Inf
+//	Y0(x < 0) = NaN
+//	Y0(NaN) = NaN
+func Y0(x float64) float64 {
+	return math.Y0(x)
+}
+
+// J1 returns the order-one Bessel function of the first kind.
+//
+// Special cases are:
+//	J1(±Inf) = 0
+//	J1(NaN) = NaN
+func J1(x float64) float64 {
+	return math.J1(x)
+}
+
+// Y1 returns the order-one Bessel function of the second kind.
+//
+// Special cases are:
+//	Y1(+Inf) = 0
+//	Y1(0) = -Inf
+//	Y1(x < 0) = NaN
+//	Y1(NaN) = NaN
+func Y1(x float64) float64 {
+	return math.Y1(x)
+}
+
+// Jn returns the order-n Bessel function of the first kind.
+//
+// Special cases are:
+//	Jn(n, ±Inf) = 0
+//	Jn(n, NaN) = NaN
+func Jn(n int, x float64) float64 {
+	return math.Jn(n, x)
+}
+
+// Yn returns the order-n Bessel function of the second kind.
+//
+// Special cases are:
+//	Yn(n, +Inf) = 0
+//	Yn(n ≥ 0, 0) = -Inf
+//	Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
+//	Yn(n, x < 0) = NaN
+//	Yn(n, NaN) = NaN
+func Yn(n int, x float64) float64 {
+	return math.Yn(n, x)
+}
+
+// Ldexp is the inverse of Frexp.
+// It returns frac × 2**exp.
+//
+// Special cases are:
+//	Ldexp(±0, exp) = ±0
+//	Ldexp(±Inf, exp) = ±Inf
+//	Ldexp(NaN, exp) = NaN
+func Ldexp(frac float64, exp int) float64 {
+	return math.Ldexp(frac, exp)
+}
+
+// Log returns the natural logarithm of x.
+//
+// Special cases are:
+//	Log(+Inf) = +Inf
+//	Log(0) = -Inf
+//	Log(x < 0) = NaN
+//	Log(NaN) = NaN
+func Log(x float64) float64 {
+	return math.Log(x)
+}
+
+// Log10 returns the decimal logarithm of x.
+// The special cases are the same as for Log.
+func Log10(x float64) float64 {
+	return math.Log10(x)
+}
+
+// Log2 returns the binary logarithm of x.
+// The special cases are the same as for Log.
+func Log2(x float64) float64 {
+	return math.Log2(x)
+}
+
+// Log1p returns the natural logarithm of 1 plus its argument x.
+// It is more accurate than Log(1 + x) when x is near zero.
+//
+// Special cases are:
+//	Log1p(+Inf) = +Inf
+//	Log1p(±0) = ±0
+//	Log1p(-1) = -Inf
+//	Log1p(x < -1) = NaN
+//	Log1p(NaN) = NaN
+func Log1p(x float64) float64 {
+	return math.Log1p(x)
+}
+
+// Logb returns the binary exponent of x.
+//
+// Special cases are:
+//	Logb(±Inf) = +Inf
+//	Logb(0) = -Inf
+//	Logb(NaN) = NaN
+func Logb(x float64) float64 {
+	return math.Logb(x)
+}
+
+// Ilogb returns the binary exponent of x as an integer.
+//
+// Special cases are:
+//	Ilogb(±Inf) = MaxInt32
+//	Ilogb(0) = MinInt32
+//	Ilogb(NaN) = MaxInt32
+func Ilogb(x float64) int {
+	return math.Ilogb(x)
+}
+
+// Mod returns the floating-point remainder of x/y.
+// The magnitude of the result is less than y and its
+// sign agrees with that of x.
+//
+// Special cases are:
+//	Mod(±Inf, y) = NaN
+//	Mod(NaN, y) = NaN
+//	Mod(x, 0) = NaN
+//	Mod(x, ±Inf) = x
+//	Mod(x, NaN) = NaN
+func Mod(x, y float64) float64 {
+	return math.Mod(x, y)
+}
+
+// Pow returns x**y, the base-x exponential of y.
+//
+// Special cases are (in order):
+//	Pow(x, ±0) = 1 for any x
+//	Pow(1, y) = 1 for any y
+//	Pow(x, 1) = x for any x
+//	Pow(NaN, y) = NaN
+//	Pow(x, NaN) = NaN
+//	Pow(±0, y) = ±Inf for y an odd integer < 0
+//	Pow(±0, -Inf) = +Inf
+//	Pow(±0, +Inf) = +0
+//	Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
+//	Pow(±0, y) = ±0 for y an odd integer > 0
+//	Pow(±0, y) = +0 for finite y > 0 and not an odd integer
+//	Pow(-1, ±Inf) = 1
+//	Pow(x, +Inf) = +Inf for |x| > 1
+//	Pow(x, -Inf) = +0 for |x| > 1
+//	Pow(x, +Inf) = +0 for |x| < 1
+//	Pow(x, -Inf) = +Inf for |x| < 1
+//	Pow(+Inf, y) = +Inf for y > 0
+//	Pow(+Inf, y) = +0 for y < 0
+//	Pow(-Inf, y) = Pow(-0, -y)
+//	Pow(x, y) = NaN for finite x < 0 and finite non-integer y
+func Pow(x, y float64) float64 {
+	return math.Pow(x, y)
+}
+
+// Pow10 returns 10**n, the base-10 exponential of n.
+//
+// Special cases are:
+//	Pow10(n) =    0 for n < -323
+//	Pow10(n) = +Inf for n > 308
+func Pow10(n int) float64 {
+	return math.Pow10(n)
+}
+
+// Remainder returns the IEEE 754 floating-point remainder of x/y.
+//
+// Special cases are:
+//	Remainder(±Inf, y) = NaN
+//	Remainder(NaN, y) = NaN
+//	Remainder(x, 0) = NaN
+//	Remainder(x, ±Inf) = x
+//	Remainder(x, NaN) = NaN
+func Remainder(x, y float64) float64 {
+	return math.Remainder(x, y)
+}
+
+// Signbit returns true if x is negative or negative zero.
+func Signbit(x float64) bool {
+	return math.Signbit(x)
+}
+
+// Cos returns the cosine of the radian argument x.
+//
+// Special cases are:
+//	Cos(±Inf) = NaN
+//	Cos(NaN) = NaN
+func Cos(x float64) float64 {
+	return math.Cos(x)
+}
+
+// Sin returns the sine of the radian argument x.
+//
+// Special cases are:
+//	Sin(±0) = ±0
+//	Sin(±Inf) = NaN
+//	Sin(NaN) = NaN
+func Sin(x float64) float64 {
+	return math.Sin(x)
+}
+
+// Sinh returns the hyperbolic sine of x.
+//
+// Special cases are:
+//	Sinh(±0) = ±0
+//	Sinh(±Inf) = ±Inf
+//	Sinh(NaN) = NaN
+func Sinh(x float64) float64 {
+	return math.Sinh(x)
+}
+
+// Cosh returns the hyperbolic cosine of x.
+//
+// Special cases are:
+//	Cosh(±0) = 1
+//	Cosh(±Inf) = +Inf
+//	Cosh(NaN) = NaN
+func Cosh(x float64) float64 {
+	return math.Cosh(x)
+}
+
+// Sqrt returns the square root of x.
+//
+// Special cases are:
+//	Sqrt(+Inf) = +Inf
+//	Sqrt(±0) = ±0
+//	Sqrt(x < 0) = NaN
+//	Sqrt(NaN) = NaN
+func Sqrt(x float64) float64 {
+	return math.Sqrt(x)
+}
+
+// Tan returns the tangent of the radian argument x.
+//
+// Special cases are:
+//	Tan(±0) = ±0
+//	Tan(±Inf) = NaN
+//	Tan(NaN) = NaN
+func Tan(x float64) float64 {
+	return math.Tan(x)
+}
+
+// Tanh returns the hyperbolic tangent of x.
+//
+// Special cases are:
+//	Tanh(±0) = ±0
+//	Tanh(±Inf) = ±1
+//	Tanh(NaN) = NaN
+func Tanh(x float64) float64 {
+	return math.Tanh(x)
+}