pkg: add generated core package
and internal qgo tool to generate them
Change-Id: Ic03dc27262d8769f3dc3cd56fa11d77ee0b68dc8
diff --git a/pkg/math/math.go b/pkg/math/math.go
new file mode 100644
index 0000000..c20e405
--- /dev/null
+++ b/pkg/math/math.go
@@ -0,0 +1,522 @@
+// Copyright 2018 The CUE Authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:generate qgo -exclude=32,^Next,^Max,^Smallest,^Min,bits,Inf,NaN,Round,Trunc,Ceil,Floor$ extract math
+
+package math
+
+import "math"
+
+// Abs returns the absolute value of x.
+//
+// Special cases are:
+// Abs(±Inf) = +Inf
+// Abs(NaN) = NaN
+func Abs(x float64) float64 {
+ return math.Abs(x)
+}
+
+// Acosh returns the inverse hyperbolic cosine of x.
+//
+// Special cases are:
+// Acosh(+Inf) = +Inf
+// Acosh(x) = NaN if x < 1
+// Acosh(NaN) = NaN
+func Acosh(x float64) float64 {
+ return math.Acosh(x)
+}
+
+// Asin returns the arcsine, in radians, of x.
+//
+// Special cases are:
+// Asin(±0) = ±0
+// Asin(x) = NaN if x < -1 or x > 1
+func Asin(x float64) float64 {
+ return math.Asin(x)
+}
+
+// Acos returns the arccosine, in radians, of x.
+//
+// Special case is:
+// Acos(x) = NaN if x < -1 or x > 1
+func Acos(x float64) float64 {
+ return math.Acos(x)
+}
+
+// Asinh returns the inverse hyperbolic sine of x.
+//
+// Special cases are:
+// Asinh(±0) = ±0
+// Asinh(±Inf) = ±Inf
+// Asinh(NaN) = NaN
+func Asinh(x float64) float64 {
+ return math.Asinh(x)
+}
+
+// Atan returns the arctangent, in radians, of x.
+//
+// Special cases are:
+// Atan(±0) = ±0
+// Atan(±Inf) = ±Pi/2
+func Atan(x float64) float64 {
+ return math.Atan(x)
+}
+
+// Atan2 returns the arc tangent of y/x, using
+// the signs of the two to determine the quadrant
+// of the return value.
+//
+// Special cases are (in order):
+// Atan2(y, NaN) = NaN
+// Atan2(NaN, x) = NaN
+// Atan2(+0, x>=0) = +0
+// Atan2(-0, x>=0) = -0
+// Atan2(+0, x<=-0) = +Pi
+// Atan2(-0, x<=-0) = -Pi
+// Atan2(y>0, 0) = +Pi/2
+// Atan2(y<0, 0) = -Pi/2
+// Atan2(+Inf, +Inf) = +Pi/4
+// Atan2(-Inf, +Inf) = -Pi/4
+// Atan2(+Inf, -Inf) = 3Pi/4
+// Atan2(-Inf, -Inf) = -3Pi/4
+// Atan2(y, +Inf) = 0
+// Atan2(y>0, -Inf) = +Pi
+// Atan2(y<0, -Inf) = -Pi
+// Atan2(+Inf, x) = +Pi/2
+// Atan2(-Inf, x) = -Pi/2
+func Atan2(y, x float64) float64 {
+ return math.Atan2(y, x)
+}
+
+// Atanh returns the inverse hyperbolic tangent of x.
+//
+// Special cases are:
+// Atanh(1) = +Inf
+// Atanh(±0) = ±0
+// Atanh(-1) = -Inf
+// Atanh(x) = NaN if x < -1 or x > 1
+// Atanh(NaN) = NaN
+func Atanh(x float64) float64 {
+ return math.Atanh(x)
+}
+
+// Cbrt returns the cube root of x.
+//
+// Special cases are:
+// Cbrt(±0) = ±0
+// Cbrt(±Inf) = ±Inf
+// Cbrt(NaN) = NaN
+func Cbrt(x float64) float64 {
+ return math.Cbrt(x)
+}
+
+// Mathematical constants.
+const (
+ E = 2.71828182845904523536028747135266249775724709369995957496696763 // https://oeis.org/A001113
+ Pi = 3.14159265358979323846264338327950288419716939937510582097494459 // https://oeis.org/A000796
+ Phi = 1.61803398874989484820458683436563811772030917980576286213544862 // https://oeis.org/A001622
+
+ Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974 // https://oeis.org/A002193
+ SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931 // https://oeis.org/A019774
+ SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779 // https://oeis.org/A002161
+ SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038 // https://oeis.org/A139339
+
+ Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 // https://oeis.org/A002162
+ Log2E = 1000000000000000000000000000000000000000000000000000000000000000 / 693147180559945309417232121458176568075500134360255254120680009
+ Ln10 = 2.30258509299404568401799145468436420760110148862877297603332790 // https://oeis.org/A002392
+ Log10E = 10000000000000000000000000000000000000000000000000000000000000 / 23025850929940456840179914546843642076011014886287729760333279
+)
+
+// Copysign returns a value with the magnitude
+// of x and the sign of y.
+func Copysign(x, y float64) float64 {
+ return math.Copysign(x, y)
+}
+
+// Dim returns the maximum of x-y or 0.
+//
+// Special cases are:
+// Dim(+Inf, +Inf) = NaN
+// Dim(-Inf, -Inf) = NaN
+// Dim(x, NaN) = Dim(NaN, x) = NaN
+func Dim(x, y float64) float64 {
+ return math.Dim(x, y)
+}
+
+// Erf returns the error function of x.
+//
+// Special cases are:
+// Erf(+Inf) = 1
+// Erf(-Inf) = -1
+// Erf(NaN) = NaN
+func Erf(x float64) float64 {
+ return math.Erf(x)
+}
+
+// Erfc returns the complementary error function of x.
+//
+// Special cases are:
+// Erfc(+Inf) = 0
+// Erfc(-Inf) = 2
+// Erfc(NaN) = NaN
+func Erfc(x float64) float64 {
+ return math.Erfc(x)
+}
+
+// Erfinv returns the inverse error function of x.
+//
+// Special cases are:
+// Erfinv(1) = +Inf
+// Erfinv(-1) = -Inf
+// Erfinv(x) = NaN if x < -1 or x > 1
+// Erfinv(NaN) = NaN
+func Erfinv(x float64) float64 {
+ return math.Erfinv(x)
+}
+
+// Erfcinv returns the inverse of Erfc(x).
+//
+// Special cases are:
+// Erfcinv(0) = +Inf
+// Erfcinv(2) = -Inf
+// Erfcinv(x) = NaN if x < 0 or x > 2
+// Erfcinv(NaN) = NaN
+func Erfcinv(x float64) float64 {
+ return math.Erfcinv(x)
+}
+
+// Exp returns e**x, the base-e exponential of x.
+//
+// Special cases are:
+// Exp(+Inf) = +Inf
+// Exp(NaN) = NaN
+// Very large values overflow to 0 or +Inf.
+// Very small values underflow to 1.
+func Exp(x float64) float64 {
+ return math.Exp(x)
+}
+
+// Exp2 returns 2**x, the base-2 exponential of x.
+//
+// Special cases are the same as Exp.
+func Exp2(x float64) float64 {
+ return math.Exp2(x)
+}
+
+// Expm1 returns e**x - 1, the base-e exponential of x minus 1.
+// It is more accurate than Exp(x) - 1 when x is near zero.
+//
+// Special cases are:
+// Expm1(+Inf) = +Inf
+// Expm1(-Inf) = -1
+// Expm1(NaN) = NaN
+// Very large values overflow to -1 or +Inf.
+func Expm1(x float64) float64 {
+ return math.Expm1(x)
+}
+
+// Gamma returns the Gamma function of x.
+//
+// Special cases are:
+// Gamma(+Inf) = +Inf
+// Gamma(+0) = +Inf
+// Gamma(-0) = -Inf
+// Gamma(x) = NaN for integer x < 0
+// Gamma(-Inf) = NaN
+// Gamma(NaN) = NaN
+func Gamma(x float64) float64 {
+ return math.Gamma(x)
+}
+
+// Hypot returns Sqrt(p*p + q*q), taking care to avoid
+// unnecessary overflow and underflow.
+//
+// Special cases are:
+// Hypot(±Inf, q) = +Inf
+// Hypot(p, ±Inf) = +Inf
+// Hypot(NaN, q) = NaN
+// Hypot(p, NaN) = NaN
+func Hypot(p, q float64) float64 {
+ return math.Hypot(p, q)
+}
+
+// J0 returns the order-zero Bessel function of the first kind.
+//
+// Special cases are:
+// J0(±Inf) = 0
+// J0(0) = 1
+// J0(NaN) = NaN
+func J0(x float64) float64 {
+ return math.J0(x)
+}
+
+// Y0 returns the order-zero Bessel function of the second kind.
+//
+// Special cases are:
+// Y0(+Inf) = 0
+// Y0(0) = -Inf
+// Y0(x < 0) = NaN
+// Y0(NaN) = NaN
+func Y0(x float64) float64 {
+ return math.Y0(x)
+}
+
+// J1 returns the order-one Bessel function of the first kind.
+//
+// Special cases are:
+// J1(±Inf) = 0
+// J1(NaN) = NaN
+func J1(x float64) float64 {
+ return math.J1(x)
+}
+
+// Y1 returns the order-one Bessel function of the second kind.
+//
+// Special cases are:
+// Y1(+Inf) = 0
+// Y1(0) = -Inf
+// Y1(x < 0) = NaN
+// Y1(NaN) = NaN
+func Y1(x float64) float64 {
+ return math.Y1(x)
+}
+
+// Jn returns the order-n Bessel function of the first kind.
+//
+// Special cases are:
+// Jn(n, ±Inf) = 0
+// Jn(n, NaN) = NaN
+func Jn(n int, x float64) float64 {
+ return math.Jn(n, x)
+}
+
+// Yn returns the order-n Bessel function of the second kind.
+//
+// Special cases are:
+// Yn(n, +Inf) = 0
+// Yn(n ≥ 0, 0) = -Inf
+// Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
+// Yn(n, x < 0) = NaN
+// Yn(n, NaN) = NaN
+func Yn(n int, x float64) float64 {
+ return math.Yn(n, x)
+}
+
+// Ldexp is the inverse of Frexp.
+// It returns frac × 2**exp.
+//
+// Special cases are:
+// Ldexp(±0, exp) = ±0
+// Ldexp(±Inf, exp) = ±Inf
+// Ldexp(NaN, exp) = NaN
+func Ldexp(frac float64, exp int) float64 {
+ return math.Ldexp(frac, exp)
+}
+
+// Log returns the natural logarithm of x.
+//
+// Special cases are:
+// Log(+Inf) = +Inf
+// Log(0) = -Inf
+// Log(x < 0) = NaN
+// Log(NaN) = NaN
+func Log(x float64) float64 {
+ return math.Log(x)
+}
+
+// Log10 returns the decimal logarithm of x.
+// The special cases are the same as for Log.
+func Log10(x float64) float64 {
+ return math.Log10(x)
+}
+
+// Log2 returns the binary logarithm of x.
+// The special cases are the same as for Log.
+func Log2(x float64) float64 {
+ return math.Log2(x)
+}
+
+// Log1p returns the natural logarithm of 1 plus its argument x.
+// It is more accurate than Log(1 + x) when x is near zero.
+//
+// Special cases are:
+// Log1p(+Inf) = +Inf
+// Log1p(±0) = ±0
+// Log1p(-1) = -Inf
+// Log1p(x < -1) = NaN
+// Log1p(NaN) = NaN
+func Log1p(x float64) float64 {
+ return math.Log1p(x)
+}
+
+// Logb returns the binary exponent of x.
+//
+// Special cases are:
+// Logb(±Inf) = +Inf
+// Logb(0) = -Inf
+// Logb(NaN) = NaN
+func Logb(x float64) float64 {
+ return math.Logb(x)
+}
+
+// Ilogb returns the binary exponent of x as an integer.
+//
+// Special cases are:
+// Ilogb(±Inf) = MaxInt32
+// Ilogb(0) = MinInt32
+// Ilogb(NaN) = MaxInt32
+func Ilogb(x float64) int {
+ return math.Ilogb(x)
+}
+
+// Mod returns the floating-point remainder of x/y.
+// The magnitude of the result is less than y and its
+// sign agrees with that of x.
+//
+// Special cases are:
+// Mod(±Inf, y) = NaN
+// Mod(NaN, y) = NaN
+// Mod(x, 0) = NaN
+// Mod(x, ±Inf) = x
+// Mod(x, NaN) = NaN
+func Mod(x, y float64) float64 {
+ return math.Mod(x, y)
+}
+
+// Pow returns x**y, the base-x exponential of y.
+//
+// Special cases are (in order):
+// Pow(x, ±0) = 1 for any x
+// Pow(1, y) = 1 for any y
+// Pow(x, 1) = x for any x
+// Pow(NaN, y) = NaN
+// Pow(x, NaN) = NaN
+// Pow(±0, y) = ±Inf for y an odd integer < 0
+// Pow(±0, -Inf) = +Inf
+// Pow(±0, +Inf) = +0
+// Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
+// Pow(±0, y) = ±0 for y an odd integer > 0
+// Pow(±0, y) = +0 for finite y > 0 and not an odd integer
+// Pow(-1, ±Inf) = 1
+// Pow(x, +Inf) = +Inf for |x| > 1
+// Pow(x, -Inf) = +0 for |x| > 1
+// Pow(x, +Inf) = +0 for |x| < 1
+// Pow(x, -Inf) = +Inf for |x| < 1
+// Pow(+Inf, y) = +Inf for y > 0
+// Pow(+Inf, y) = +0 for y < 0
+// Pow(-Inf, y) = Pow(-0, -y)
+// Pow(x, y) = NaN for finite x < 0 and finite non-integer y
+func Pow(x, y float64) float64 {
+ return math.Pow(x, y)
+}
+
+// Pow10 returns 10**n, the base-10 exponential of n.
+//
+// Special cases are:
+// Pow10(n) = 0 for n < -323
+// Pow10(n) = +Inf for n > 308
+func Pow10(n int) float64 {
+ return math.Pow10(n)
+}
+
+// Remainder returns the IEEE 754 floating-point remainder of x/y.
+//
+// Special cases are:
+// Remainder(±Inf, y) = NaN
+// Remainder(NaN, y) = NaN
+// Remainder(x, 0) = NaN
+// Remainder(x, ±Inf) = x
+// Remainder(x, NaN) = NaN
+func Remainder(x, y float64) float64 {
+ return math.Remainder(x, y)
+}
+
+// Signbit returns true if x is negative or negative zero.
+func Signbit(x float64) bool {
+ return math.Signbit(x)
+}
+
+// Cos returns the cosine of the radian argument x.
+//
+// Special cases are:
+// Cos(±Inf) = NaN
+// Cos(NaN) = NaN
+func Cos(x float64) float64 {
+ return math.Cos(x)
+}
+
+// Sin returns the sine of the radian argument x.
+//
+// Special cases are:
+// Sin(±0) = ±0
+// Sin(±Inf) = NaN
+// Sin(NaN) = NaN
+func Sin(x float64) float64 {
+ return math.Sin(x)
+}
+
+// Sinh returns the hyperbolic sine of x.
+//
+// Special cases are:
+// Sinh(±0) = ±0
+// Sinh(±Inf) = ±Inf
+// Sinh(NaN) = NaN
+func Sinh(x float64) float64 {
+ return math.Sinh(x)
+}
+
+// Cosh returns the hyperbolic cosine of x.
+//
+// Special cases are:
+// Cosh(±0) = 1
+// Cosh(±Inf) = +Inf
+// Cosh(NaN) = NaN
+func Cosh(x float64) float64 {
+ return math.Cosh(x)
+}
+
+// Sqrt returns the square root of x.
+//
+// Special cases are:
+// Sqrt(+Inf) = +Inf
+// Sqrt(±0) = ±0
+// Sqrt(x < 0) = NaN
+// Sqrt(NaN) = NaN
+func Sqrt(x float64) float64 {
+ return math.Sqrt(x)
+}
+
+// Tan returns the tangent of the radian argument x.
+//
+// Special cases are:
+// Tan(±0) = ±0
+// Tan(±Inf) = NaN
+// Tan(NaN) = NaN
+func Tan(x float64) float64 {
+ return math.Tan(x)
+}
+
+// Tanh returns the hyperbolic tangent of x.
+//
+// Special cases are:
+// Tanh(±0) = ±0
+// Tanh(±Inf) = ±1
+// Tanh(NaN) = NaN
+func Tanh(x float64) float64 {
+ return math.Tanh(x)
+}