| // Copyright 2018 The CUE Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // Copyright 2018 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package math |
| |
| import ( |
| "math" |
| |
| "github.com/cockroachdb/apd/v2" |
| |
| "cuelang.org/go/internal" |
| ) |
| |
| var apdContext = apd.BaseContext.WithPrecision(24) |
| |
| // Abs returns the absolute value of x. |
| // |
| // Special case: Abs(±Inf) = +Inf |
| func Abs(x *internal.Decimal) (*internal.Decimal, error) { |
| var d internal.Decimal |
| _, err := apdContext.Abs(&d, x) |
| return &d, err |
| } |
| |
| // Acosh returns the inverse hyperbolic cosine of x. |
| // |
| // Special cases are: |
| // Acosh(+Inf) = +Inf |
| // Acosh(x) = NaN if x < 1 |
| // Acosh(NaN) = NaN |
| func Acosh(x float64) float64 { |
| return math.Acosh(x) |
| } |
| |
| // Asin returns the arcsine, in radians, of x. |
| // |
| // Special cases are: |
| // Asin(±0) = ±0 |
| // Asin(x) = NaN if x < -1 or x > 1 |
| func Asin(x float64) float64 { |
| return math.Asin(x) |
| } |
| |
| // Acos returns the arccosine, in radians, of x. |
| // |
| // Special case is: |
| // Acos(x) = NaN if x < -1 or x > 1 |
| func Acos(x float64) float64 { |
| return math.Acos(x) |
| } |
| |
| // Asinh returns the inverse hyperbolic sine of x. |
| // |
| // Special cases are: |
| // Asinh(±0) = ±0 |
| // Asinh(±Inf) = ±Inf |
| // Asinh(NaN) = NaN |
| func Asinh(x float64) float64 { |
| return math.Asinh(x) |
| } |
| |
| // Atan returns the arctangent, in radians, of x. |
| // |
| // Special cases are: |
| // Atan(±0) = ±0 |
| // Atan(±Inf) = ±Pi/2 |
| func Atan(x float64) float64 { |
| return math.Atan(x) |
| } |
| |
| // Atan2 returns the arc tangent of y/x, using |
| // the signs of the two to determine the quadrant |
| // of the return value. |
| // |
| // Special cases are (in order): |
| // Atan2(y, NaN) = NaN |
| // Atan2(NaN, x) = NaN |
| // Atan2(+0, x>=0) = +0 |
| // Atan2(-0, x>=0) = -0 |
| // Atan2(+0, x<=-0) = +Pi |
| // Atan2(-0, x<=-0) = -Pi |
| // Atan2(y>0, 0) = +Pi/2 |
| // Atan2(y<0, 0) = -Pi/2 |
| // Atan2(+Inf, +Inf) = +Pi/4 |
| // Atan2(-Inf, +Inf) = -Pi/4 |
| // Atan2(+Inf, -Inf) = 3Pi/4 |
| // Atan2(-Inf, -Inf) = -3Pi/4 |
| // Atan2(y, +Inf) = 0 |
| // Atan2(y>0, -Inf) = +Pi |
| // Atan2(y<0, -Inf) = -Pi |
| // Atan2(+Inf, x) = +Pi/2 |
| // Atan2(-Inf, x) = -Pi/2 |
| func Atan2(y, x float64) float64 { |
| return math.Atan2(y, x) |
| } |
| |
| // Atanh returns the inverse hyperbolic tangent of x. |
| // |
| // Special cases are: |
| // Atanh(1) = +Inf |
| // Atanh(±0) = ±0 |
| // Atanh(-1) = -Inf |
| // Atanh(x) = NaN if x < -1 or x > 1 |
| // Atanh(NaN) = NaN |
| func Atanh(x float64) float64 { |
| return math.Atanh(x) |
| } |
| |
| // Cbrt returns the cube root of x. |
| // |
| // Special cases are: |
| // Cbrt(±0) = ±0 |
| // Cbrt(±Inf) = ±Inf |
| // Cbrt(NaN) = NaN |
| func Cbrt(x *internal.Decimal) (*internal.Decimal, error) { |
| var d internal.Decimal |
| _, err := apdContext.Cbrt(&d, x) |
| return &d, err |
| } |
| |
| // Mathematical constants. |
| const ( |
| E = 2.71828182845904523536028747135266249775724709369995957496696763 // https://oeis.org/A001113 |
| Pi = 3.14159265358979323846264338327950288419716939937510582097494459 // https://oeis.org/A000796 |
| Phi = 1.61803398874989484820458683436563811772030917980576286213544862 // https://oeis.org/A001622 |
| |
| Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974 // https://oeis.org/A002193 |
| SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931 // https://oeis.org/A019774 |
| SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779 // https://oeis.org/A002161 |
| SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038 // https://oeis.org/A139339 |
| |
| Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 // https://oeis.org/A002162 |
| Log2E = 1000000000000000000000000000000000000000000000000000000000000000 / 693147180559945309417232121458176568075500134360255254120680009 |
| Ln10 = 2.30258509299404568401799145468436420760110148862877297603332790 // https://oeis.org/A002392 |
| Log10E = 10000000000000000000000000000000000000000000000000000000000000 / 23025850929940456840179914546843642076011014886287729760333279 |
| ) |
| |
| // Copysign returns a value with the magnitude |
| // of x and the sign of y. |
| func Copysign(x, y *internal.Decimal) *internal.Decimal { |
| var d internal.Decimal |
| d.Set(x) |
| d.Negative = y.Negative |
| return &d |
| } |
| |
| var zero = apd.New(0, 0) |
| |
| // Dim returns the maximum of x-y or 0. |
| // |
| // Special cases are: |
| // Dim(+Inf, +Inf) = NaN |
| // Dim(-Inf, -Inf) = NaN |
| // Dim(x, NaN) = Dim(NaN, x) = NaN |
| func Dim(x, y *internal.Decimal) (*internal.Decimal, error) { |
| var d internal.Decimal |
| _, err := apdContext.Sub(&d, x, y) |
| if err != nil { |
| return nil, err |
| } |
| if d.Negative { |
| return zero, nil |
| } |
| return &d, nil |
| } |
| |
| // Erf returns the error function of x. |
| // |
| // Special cases are: |
| // Erf(+Inf) = 1 |
| // Erf(-Inf) = -1 |
| // Erf(NaN) = NaN |
| func Erf(x float64) float64 { |
| return math.Erf(x) |
| } |
| |
| // Erfc returns the complementary error function of x. |
| // |
| // Special cases are: |
| // Erfc(+Inf) = 0 |
| // Erfc(-Inf) = 2 |
| // Erfc(NaN) = NaN |
| func Erfc(x float64) float64 { |
| return math.Erfc(x) |
| } |
| |
| // Erfinv returns the inverse error function of x. |
| // |
| // Special cases are: |
| // Erfinv(1) = +Inf |
| // Erfinv(-1) = -Inf |
| // Erfinv(x) = NaN if x < -1 or x > 1 |
| // Erfinv(NaN) = NaN |
| func Erfinv(x float64) float64 { |
| return math.Erfinv(x) |
| } |
| |
| // Erfcinv returns the inverse of Erfc(x). |
| // |
| // Special cases are: |
| // Erfcinv(0) = +Inf |
| // Erfcinv(2) = -Inf |
| // Erfcinv(x) = NaN if x < 0 or x > 2 |
| // Erfcinv(NaN) = NaN |
| func Erfcinv(x float64) float64 { |
| return math.Erfcinv(x) |
| } |
| |
| // Exp returns e**x, the base-e exponential of x. |
| // |
| // Special cases are: |
| // Exp(+Inf) = +Inf |
| // Exp(NaN) = NaN |
| // Very large values overflow to 0 or +Inf. |
| // Very small values underflow to 1. |
| func Exp(x *internal.Decimal) (*internal.Decimal, error) { |
| var d internal.Decimal |
| _, err := apdContext.Exp(&d, x) |
| return &d, err |
| } |
| |
| var two = apd.New(2, 0) |
| |
| // Exp2 returns 2**x, the base-2 exponential of x. |
| // |
| // Special cases are the same as Exp. |
| func Exp2(x *internal.Decimal) (*internal.Decimal, error) { |
| var d internal.Decimal |
| _, err := apdContext.Pow(&d, two, x) |
| return &d, err |
| } |
| |
| // Expm1 returns e**x - 1, the base-e exponential of x minus 1. |
| // It is more accurate than Exp(x) - 1 when x is near zero. |
| // |
| // Special cases are: |
| // Expm1(+Inf) = +Inf |
| // Expm1(-Inf) = -1 |
| // Expm1(NaN) = NaN |
| // Very large values overflow to -1 or +Inf. |
| func Expm1(x float64) float64 { |
| return math.Expm1(x) |
| } |
| |
| // Gamma returns the Gamma function of x. |
| // |
| // Special cases are: |
| // Gamma(+Inf) = +Inf |
| // Gamma(+0) = +Inf |
| // Gamma(-0) = -Inf |
| // Gamma(x) = NaN for integer x < 0 |
| // Gamma(-Inf) = NaN |
| // Gamma(NaN) = NaN |
| func Gamma(x float64) float64 { |
| return math.Gamma(x) |
| } |
| |
| // Hypot returns Sqrt(p*p + q*q), taking care to avoid |
| // unnecessary overflow and underflow. |
| // |
| // Special cases are: |
| // Hypot(±Inf, q) = +Inf |
| // Hypot(p, ±Inf) = +Inf |
| // Hypot(NaN, q) = NaN |
| // Hypot(p, NaN) = NaN |
| func Hypot(p, q float64) float64 { |
| return math.Hypot(p, q) |
| } |
| |
| // J0 returns the order-zero Bessel function of the first kind. |
| // |
| // Special cases are: |
| // J0(±Inf) = 0 |
| // J0(0) = 1 |
| // J0(NaN) = NaN |
| func J0(x float64) float64 { |
| return math.J0(x) |
| } |
| |
| // Y0 returns the order-zero Bessel function of the second kind. |
| // |
| // Special cases are: |
| // Y0(+Inf) = 0 |
| // Y0(0) = -Inf |
| // Y0(x < 0) = NaN |
| // Y0(NaN) = NaN |
| func Y0(x float64) float64 { |
| return math.Y0(x) |
| } |
| |
| // J1 returns the order-one Bessel function of the first kind. |
| // |
| // Special cases are: |
| // J1(±Inf) = 0 |
| // J1(NaN) = NaN |
| func J1(x float64) float64 { |
| return math.J1(x) |
| } |
| |
| // Y1 returns the order-one Bessel function of the second kind. |
| // |
| // Special cases are: |
| // Y1(+Inf) = 0 |
| // Y1(0) = -Inf |
| // Y1(x < 0) = NaN |
| // Y1(NaN) = NaN |
| func Y1(x float64) float64 { |
| return math.Y1(x) |
| } |
| |
| // Jn returns the order-n Bessel function of the first kind. |
| // |
| // Special cases are: |
| // Jn(n, ±Inf) = 0 |
| // Jn(n, NaN) = NaN |
| func Jn(n int, x float64) float64 { |
| return math.Jn(n, x) |
| } |
| |
| // Yn returns the order-n Bessel function of the second kind. |
| // |
| // Special cases are: |
| // Yn(n, +Inf) = 0 |
| // Yn(n ≥ 0, 0) = -Inf |
| // Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even |
| // Yn(n, x < 0) = NaN |
| // Yn(n, NaN) = NaN |
| func Yn(n int, x float64) float64 { |
| return math.Yn(n, x) |
| } |
| |
| // Ldexp is the inverse of Frexp. |
| // It returns frac × 2**exp. |
| // |
| // Special cases are: |
| // Ldexp(±0, exp) = ±0 |
| // Ldexp(±Inf, exp) = ±Inf |
| // Ldexp(NaN, exp) = NaN |
| func Ldexp(frac float64, exp int) float64 { |
| return math.Ldexp(frac, exp) |
| } |
| |
| // Log returns the natural logarithm of x. |
| // |
| // Special cases are: |
| // Log(+Inf) = +Inf |
| // Log(0) = -Inf |
| // Log(x < 0) = NaN |
| // Log(NaN) = NaN |
| func Log(x *internal.Decimal) (*internal.Decimal, error) { |
| var d internal.Decimal |
| _, err := apdContext.Ln(&d, x) |
| return &d, err |
| } |
| |
| // Log10 returns the decimal logarithm of x. |
| // The special cases are the same as for Log. |
| func Log10(x *internal.Decimal) (*internal.Decimal, error) { |
| var d internal.Decimal |
| _, err := apdContext.Log10(&d, x) |
| return &d, err |
| } |
| |
| // Log2 returns the binary logarithm of x. |
| // The special cases are the same as for Log. |
| func Log2(x *internal.Decimal) (*internal.Decimal, error) { |
| var d, ln2 internal.Decimal |
| _, _ = apdContext.Ln(&ln2, two) |
| _, err := apdContext.Ln(&d, x) |
| if err != nil { |
| return &d, err |
| } |
| _, err = apdContext.Quo(&d, &d, &ln2) |
| return &d, err |
| } |
| |
| // Log1p returns the natural logarithm of 1 plus its argument x. |
| // It is more accurate than Log(1 + x) when x is near zero. |
| // |
| // Special cases are: |
| // Log1p(+Inf) = +Inf |
| // Log1p(±0) = ±0 |
| // Log1p(-1) = -Inf |
| // Log1p(x < -1) = NaN |
| // Log1p(NaN) = NaN |
| func Log1p(x float64) float64 { |
| return math.Log1p(x) |
| } |
| |
| // Logb returns the binary exponent of x. |
| // |
| // Special cases are: |
| // Logb(±Inf) = +Inf |
| // Logb(0) = -Inf |
| // Logb(NaN) = NaN |
| func Logb(x float64) float64 { |
| return math.Logb(x) |
| } |
| |
| // Ilogb returns the binary exponent of x as an integer. |
| // |
| // Special cases are: |
| // Ilogb(±Inf) = MaxInt32 |
| // Ilogb(0) = MinInt32 |
| // Ilogb(NaN) = MaxInt32 |
| func Ilogb(x float64) int { |
| return math.Ilogb(x) |
| } |
| |
| // Mod returns the floating-point remainder of x/y. |
| // The magnitude of the result is less than y and its |
| // sign agrees with that of x. |
| // |
| // Special cases are: |
| // Mod(±Inf, y) = NaN |
| // Mod(NaN, y) = NaN |
| // Mod(x, 0) = NaN |
| // Mod(x, ±Inf) = x |
| // Mod(x, NaN) = NaN |
| func Mod(x, y float64) float64 { |
| return math.Mod(x, y) |
| } |
| |
| // Pow returns x**y, the base-x exponential of y. |
| // |
| // Special cases are (in order): |
| // Pow(x, ±0) = 1 for any x |
| // Pow(1, y) = 1 for any y |
| // Pow(x, 1) = x for any x |
| // Pow(NaN, y) = NaN |
| // Pow(x, NaN) = NaN |
| // Pow(±0, y) = ±Inf for y an odd integer < 0 |
| // Pow(±0, -Inf) = +Inf |
| // Pow(±0, +Inf) = +0 |
| // Pow(±0, y) = +Inf for finite y < 0 and not an odd integer |
| // Pow(±0, y) = ±0 for y an odd integer > 0 |
| // Pow(±0, y) = +0 for finite y > 0 and not an odd integer |
| // Pow(-1, ±Inf) = 1 |
| // Pow(x, +Inf) = +Inf for |x| > 1 |
| // Pow(x, -Inf) = +0 for |x| > 1 |
| // Pow(x, +Inf) = +0 for |x| < 1 |
| // Pow(x, -Inf) = +Inf for |x| < 1 |
| // Pow(+Inf, y) = +Inf for y > 0 |
| // Pow(+Inf, y) = +0 for y < 0 |
| // Pow(-Inf, y) = Pow(-0, -y) |
| // Pow(x, y) = NaN for finite x < 0 and finite non-integer y |
| func Pow(x, y *internal.Decimal) (*internal.Decimal, error) { |
| var d internal.Decimal |
| _, err := apdContext.Pow(&d, x, y) |
| return &d, err |
| } |
| |
| // Pow10 returns 10**n, the base-10 exponential of n. |
| // |
| func Pow10(n int32) *internal.Decimal { |
| return apd.New(1, n) |
| } |
| |
| // Remainder returns the IEEE 754 floating-point remainder of x/y. |
| // |
| // Special cases are: |
| // Remainder(±Inf, y) = NaN |
| // Remainder(NaN, y) = NaN |
| // Remainder(x, 0) = NaN |
| // Remainder(x, ±Inf) = x |
| // Remainder(x, NaN) = NaN |
| func Remainder(x, y float64) float64 { |
| return math.Remainder(x, y) |
| } |
| |
| // Signbit reports whether x is negative or negative zero. |
| func Signbit(x *internal.Decimal) bool { |
| return x.Negative |
| } |
| |
| // Cos returns the cosine of the radian argument x. |
| // |
| // Special cases are: |
| // Cos(±Inf) = NaN |
| // Cos(NaN) = NaN |
| func Cos(x float64) float64 { |
| return math.Cos(x) |
| } |
| |
| // Sin returns the sine of the radian argument x. |
| // |
| // Special cases are: |
| // Sin(±0) = ±0 |
| // Sin(±Inf) = NaN |
| // Sin(NaN) = NaN |
| func Sin(x float64) float64 { |
| return math.Sin(x) |
| } |
| |
| // Sinh returns the hyperbolic sine of x. |
| // |
| // Special cases are: |
| // Sinh(±0) = ±0 |
| // Sinh(±Inf) = ±Inf |
| // Sinh(NaN) = NaN |
| func Sinh(x float64) float64 { |
| return math.Sinh(x) |
| } |
| |
| // Cosh returns the hyperbolic cosine of x. |
| // |
| // Special cases are: |
| // Cosh(±0) = 1 |
| // Cosh(±Inf) = +Inf |
| // Cosh(NaN) = NaN |
| func Cosh(x float64) float64 { |
| return math.Cosh(x) |
| } |
| |
| // Sqrt returns the square root of x. |
| // |
| // Special cases are: |
| // Sqrt(+Inf) = +Inf |
| // Sqrt(±0) = ±0 |
| // Sqrt(x < 0) = NaN |
| // Sqrt(NaN) = NaN |
| func Sqrt(x float64) float64 { |
| return math.Sqrt(x) |
| } |
| |
| // Tan returns the tangent of the radian argument x. |
| // |
| // Special cases are: |
| // Tan(±0) = ±0 |
| // Tan(±Inf) = NaN |
| // Tan(NaN) = NaN |
| func Tan(x float64) float64 { |
| return math.Tan(x) |
| } |
| |
| // Tanh returns the hyperbolic tangent of x. |
| // |
| // Special cases are: |
| // Tanh(±0) = ±0 |
| // Tanh(±Inf) = ±1 |
| // Tanh(NaN) = NaN |
| func Tanh(x float64) float64 { |
| return math.Tanh(x) |
| } |