blob: 05881cb3a13a9afa0b48ca2ff971223db53cdd9f [file] [log] [blame]
// Copyright 2018 The CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package cue
import (
"bytes"
"cuelang.org/go/cue/token"
"cuelang.org/go/internal"
)
// TODO: it probably makes sense to have only two modes left: subsuming a schema
// and subsuming a final value.
func subsumes(v, w Value, mode subsumeMode) error {
ctx := v.ctx()
gt := v.eval(ctx)
lt := w.eval(ctx)
s := subsumer{ctx: ctx, mode: mode}
if !s.subsumes(gt, lt) {
var b *bottom
src := binSrc(token.NoPos, opUnify, gt, lt)
if s.gt != nil && s.lt != nil {
src := binSrc(token.NoPos, opUnify, s.gt, s.lt)
var ok bool
if s.missing != 0 {
b = ctx.mkErr(src, "missing field %q", ctx.labelStr(s.missing))
} else if b, ok = binOp(ctx, src, opUnify, s.gt, s.lt).(*bottom); !ok {
b = ctx.mkErr(src, "value not an instance")
}
}
if b == nil {
b = ctx.mkErr(src, "value not an instance")
} else {
b = ctx.mkErr(src, b, "%v", b)
}
err := w.toErr(b)
if s.inexact {
err = internal.DecorateError(internal.ErrInexact, err)
}
return err
}
return nil
}
type subsumer struct {
ctx *context
mode subsumeMode
inexact bool // If true, the result could be a false negative.
// recorded values where an error occurred.
gt, lt evaluated
missing label
// depth is used to work around undetected cycles.
// TODO(eval): remove once cycle detection is implemented.
depth int
}
type subsumeMode int
const (
// subChoose ensures values are elected before doing a subsumption. This
// feature is on the conservative side and may result in false negatives.
subChoose subsumeMode = 1 << iota
// subNoOptional ignores optional fields for the purpose of subsumption.
// This option is predominantly intended for implementing equality checks.
// TODO: may be unnecessary now subFinal is available.
subNoOptional
// The subsumed value is final.
subFinal
// subSchema is used to compare schema. It should ignore closedness.
subSchema
)
// TODO: improve upon this highly inefficient implementation. There should
// be a dedicated equal function once the dust settles.
func equals(c *context, x, y value) bool {
s := subsumer{ctx: c, mode: subNoOptional}
return s.subsumes(x, y) && s.subsumes(y, x)
}
// subsumes checks gt subsumes lt. If any of the values contains references or
// unevaluated expressions, structural subsumption is performed. This means
// subsumption is conservative; it may return false when a guarantee for
// subsumption could be proven. For concreted values it returns the exact
// relation. It never returns a false positive.
func (s *subsumer) subsumes(gt, lt value) (result bool) {
if s.depth > internal.MaxDepth {
return true
}
s.depth++
defer func() { s.depth-- }()
ctx := s.ctx
var v, w evaluated
if s.mode&subChoose == 0 {
v = gt.evalPartial(ctx)
w = lt.evalPartial(ctx)
} else {
v = ctx.manifest(gt)
w = ctx.manifest(lt)
}
if !isIncomplete(v) && !isIncomplete(w) {
gt = v
lt = w
}
a := gt.kind()
b := lt.kind()
switch {
case b == bottomKind:
return true
case b&^(a&b) != 0:
// a does not have strictly more bits. This implies any ground kind
// subsuming a non-ground type.
goto exit
// TODO: consider not supporting references.
// case (a|b)&(referenceKind) != 0:
// // no resolution if references are in play.
// return false, false
}
switch lt := lt.(type) {
case *unification:
if _, ok := gt.(*unification); !ok {
for _, x := range lt.values {
if s.subsumes(gt, x) {
return true
}
}
goto exit
}
case *disjunction:
if _, ok := gt.(*disjunction); !ok {
for _, x := range lt.values {
if !s.subsumes(gt, x.val) {
return false
}
}
return true
}
}
result = gt.subsumesImpl(s, lt)
exit:
if !result && s.gt == nil && s.lt == nil {
s.gt = v
s.lt = w
}
return result
}
func (x *structLit) subsumesImpl(s *subsumer, v value) bool {
ctx := s.ctx
ignoreOptional := s.mode&subNoOptional != 0
if o, ok := v.(*structLit); ok {
if x.optionals != nil && !ignoreOptional {
if s.mode&subFinal == 0 {
// TODO: also cross-validate optional fields in the schema case.
s.inexact = true
return false
}
for _, b := range o.arcs {
if b.optional || b.definition {
continue
}
name := ctx.labelStr(b.feature)
arg := &stringLit{x.baseValue, name, nil}
u, _ := x.optionals.constraint(ctx, arg)
if u != nil && !s.subsumes(u, b.v) {
return false
}
}
}
if len(x.comprehensions) > 0 {
s.inexact = true
return false
}
if x.emit != nil {
if o.emit == nil || !s.subsumes(x.emit, o.emit) {
return false
}
}
xClosed := x.closeStatus.shouldClose() && s.mode&subSchema == 0
oClosed := o.closeStatus.shouldClose() && s.mode&subSchema == 0
// all arcs in n must exist in v and its values must subsume.
for _, a := range x.arcs {
if a.optional && ignoreOptional {
continue
}
b := o.lookup(ctx, a.feature)
if !a.optional && b.optional {
return false
} else if b.val() == nil {
if a.definition && s.mode&subFinal != 0 {
continue
}
// if o is closed, the field is implicitly defined as _|_ and
// thus subsumed. Technically, this is even true if a is not
// optional, but in that case it means that o is invalid, so
// return false regardless
if a.optional && (oClosed || s.mode&subFinal != 0) {
continue
}
// If field a is optional and has value top, neither the
// omission of the field nor the field defined with any value
// may cause unification to fail.
if a.optional && isTop(a.v) {
continue
}
s.missing = a.feature
s.gt = a.val()
s.lt = o
return false
} else if a.definition != b.definition {
return false
} else if !s.subsumes(a.v, b.val()) {
return false
}
}
// For closed structs, all arcs in b must exist in a.
if xClosed {
if !ignoreOptional && !oClosed && s.mode&subFinal == 0 {
return false
}
ignoreOptional = ignoreOptional || s.mode&subFinal != 0
for _, b := range o.arcs {
if ignoreOptional && b.optional {
continue
}
a := x.lookup(ctx, b.feature)
if a.val() == nil {
name := ctx.labelStr(b.feature)
arg := &stringLit{x.baseValue, name, nil}
u, _ := x.optionals.constraint(ctx, arg)
if u == nil { // subsumption already checked
s.lt = b.val()
return false
}
}
}
}
}
return !isBottom(v)
}
func (*top) subsumesImpl(s *subsumer, v value) bool {
return true
}
func (x *bottom) subsumesImpl(s *subsumer, v value) bool {
// never called.
return v.kind() == bottomKind
}
func (x *basicType) subsumesImpl(s *subsumer, v value) bool {
return true
}
func (x *bound) subsumesImpl(s *subsumer, v value) bool {
ctx := s.ctx
if isBottom(v) {
return true
}
kx := x.value.kind()
if !kx.isDone() || !kx.isGround() {
return false
}
switch y := v.(type) {
case *bound:
if ky := y.value.kind(); ky.isDone() && ky.isGround() {
if (kx&ky)&^kx != 0 {
return false
}
// x subsumes y if
// x: >= a, y: >= b ==> a <= b
// x: >= a, y: > b ==> a <= b
// x: > a, y: > b ==> a <= b
// x: > a, y: >= b ==> a < b
//
// x: <= a, y: <= b ==> a >= b
//
// x: != a, y: != b ==> a != b
//
// false if types or op direction doesn't match
xv := x.value.(evaluated)
yv := y.value.(evaluated)
switch x.op {
case opGtr:
if y.op == opGeq {
return test(ctx, x, opLss, xv, yv)
}
fallthrough
case opGeq:
if y.op == opGtr || y.op == opGeq {
return test(ctx, x, opLeq, xv, yv)
}
case opLss:
if y.op == opLeq {
return test(ctx, x, opGtr, xv, yv)
}
fallthrough
case opLeq:
if y.op == opLss || y.op == opLeq {
return test(ctx, x, opGeq, xv, yv)
}
case opNeq:
switch y.op {
case opNeq:
return test(ctx, x, opEql, xv, yv)
case opGeq:
return test(ctx, x, opLss, xv, yv)
case opGtr:
return test(ctx, x, opLeq, xv, yv)
case opLss:
return test(ctx, x, opGeq, xv, yv)
case opLeq:
return test(ctx, x, opGtr, xv, yv)
}
case opMat, opNMat:
// these are just approximations
if y.op == x.op {
return test(ctx, x, opEql, xv, yv)
}
default:
// opNeq already handled above.
panic("cue: undefined bound mode")
}
}
// structural equivalence
return false
case *numLit, *stringLit, *durationLit, *boolLit:
return test(ctx, x, x.op, y.(evaluated), x.value.(evaluated))
}
return false
}
func (x *nullLit) subsumesImpl(s *subsumer, v value) bool {
return true
}
func (x *boolLit) subsumesImpl(s *subsumer, v value) bool {
return x.b == v.(*boolLit).b
}
func (x *stringLit) subsumesImpl(s *subsumer, v value) bool {
return x.str == v.(*stringLit).str
}
func (x *bytesLit) subsumesImpl(s *subsumer, v value) bool {
return bytes.Equal(x.b, v.(*bytesLit).b)
}
func (x *numLit) subsumesImpl(s *subsumer, v value) bool {
b := v.(*numLit)
return x.v.Cmp(&b.v) == 0
}
func (x *durationLit) subsumesImpl(s *subsumer, v value) bool {
return x.d == v.(*durationLit).d
}
func (x *list) subsumesImpl(s *subsumer, v value) bool {
switch y := v.(type) {
case *list:
if !s.subsumes(x.len, y.len) {
return false
}
// TODO: need to handle case where len(x.elem) > len(y.elem) explicitly
// if we introduce cap().
if !s.subsumes(x.elem, y.elem) {
return false
}
// TODO: assuming continuous indices, use merge sort if we allow
// sparse arrays.
for _, a := range y.elem.arcs[len(x.elem.arcs):] {
if !s.subsumes(x.typ, a.v) {
return false
}
}
if y.isOpen() { // implies from first check that x.IsOpen.
return s.subsumes(x.typ, y.typ)
}
return true
}
return isBottom(v)
}
func (x *params) subsumes(s *subsumer, y *params) bool {
// structural equivalence
// TODO: make agnostic to argument names.
if len(y.arcs) != len(x.arcs) {
return false
}
for i, a := range x.arcs {
if !s.subsumes(a.v, y.arcs[i].v) {
return false
}
}
return true
}
func (x *lambdaExpr) subsumesImpl(s *subsumer, v value) bool {
// structural equivalence
if y, ok := v.(*lambdaExpr); ok {
return x.params.subsumes(s, y.params) &&
s.subsumes(x.value, y.value)
}
return isBottom(v)
}
func (x *unification) subsumesImpl(s *subsumer, v value) bool {
if y, ok := v.(*unification); ok {
// A unification subsumes another unification if for all values a in x
// there is a value b in y such that a subsumes b.
//
// This assumes overlapping ranges in disjunctions are merged.If this is
// not the case, subsumes will return a false negative, which is
// allowed.
outer:
for _, vx := range x.values {
for _, vy := range y.values {
if s.subsumes(vx, vy) {
continue outer
}
}
// TODO: should this be marked as inexact?
return false
}
return true
}
subsumed := true
for _, vx := range x.values {
subsumed = subsumed && s.subsumes(vx, v)
}
return subsumed
}
// subsumes for disjunction is logically precise. However, just like with
// structural subsumption, it should not have to be called after evaluation.
func (x *disjunction) subsumesImpl(s *subsumer, v value) bool {
// A disjunction subsumes another disjunction if all values of v are
// subsumed by any of the values of x, and default values in v are subsumed
// by the default values of x.
//
// This assumes that overlapping ranges in x are merged. If this is not the
// case, subsumes will return a false negative, which is allowed.
if d, ok := v.(*disjunction); ok {
// at least one value in x should subsume each value in d.
outer:
for _, vd := range d.values {
// v is subsumed if any value in x subsumes v.
for _, vx := range x.values {
if (vx.marked || !vd.marked) && s.subsumes(vx.val, vd.val) {
continue outer
}
}
return false
}
return true
}
// v is subsumed if any value in x subsumes v.
for _, vx := range x.values {
if s.subsumes(vx.val, v) {
return true
}
}
// TODO: should this be marked as inexact?
return false
}
// Structural subsumption operations. Should never have to be called after
// evaluation.
// structural equivalence
func (x *nodeRef) subsumesImpl(s *subsumer, v value) bool {
if r, ok := v.(*nodeRef); ok {
return x.node == r.node
}
return isBottom(v)
}
// structural equivalence
func (x *selectorExpr) subsumesImpl(s *subsumer, v value) bool {
if r, ok := v.(*selectorExpr); ok {
return x.feature == r.feature && s.subsumes(x.x, r.x) // subChoose
}
return isBottom(v)
}
func (x *interpolation) subsumesImpl(s *subsumer, v value) bool {
switch v := v.(type) {
case *stringLit:
// Be conservative if not ground.
s.inexact = true
return false
case *interpolation:
// structural equivalence
if len(x.parts) != len(v.parts) {
return false
}
for i, p := range x.parts {
if !s.subsumes(p, v.parts[i]) {
return false
}
}
return true
}
return false
}
// structural equivalence
func (x *indexExpr) subsumesImpl(s *subsumer, v value) bool {
// TODO: what does it mean to subsume if the index value is not known?
if r, ok := v.(*indexExpr); ok {
// TODO: could be narrowed down if we know the exact value of the index
// and referenced value.
return s.subsumes(x.x, r.x) && s.subsumes(x.index, r.index)
}
return isBottom(v)
}
// structural equivalence
func (x *sliceExpr) subsumesImpl(s *subsumer, v value) bool {
// TODO: what does it mean to subsume if the index value is not known?
if r, ok := v.(*sliceExpr); ok {
// TODO: could be narrowed down if we know the exact value of the index
// and referenced value.
return s.subsumes(x.x, r.x) &&
s.subsumes(x.lo, r.lo) &&
s.subsumes(x.hi, r.hi)
}
return isBottom(v)
}
// structural equivalence
func (x *customValidator) subsumesImpl(s *subsumer, v value) bool {
y, ok := v.(*customValidator)
if !ok {
return isBottom(v)
}
if x.call != y.call {
return false
}
for i, v := range x.args {
if !s.subsumes(v, y.args[i]) {
return false
}
}
return true
}
// structural equivalence
func (x *callExpr) subsumesImpl(s *subsumer, v value) bool {
if c, ok := v.(*callExpr); ok {
if len(x.args) != len(c.args) {
return false
}
for i, a := range x.args {
if !s.subsumes(a, c.args[i]) {
return false
}
}
return s.subsumes(x.x, c.x)
}
return isBottom(v)
}
// structural equivalence
func (x *unaryExpr) subsumesImpl(s *subsumer, v value) bool {
if b, ok := v.(*unaryExpr); ok {
return x.op == b.op && s.subsumes(x.x, b.x)
}
return isBottom(v)
}
// structural equivalence
func (x *binaryExpr) subsumesImpl(s *subsumer, v value) bool {
if b, ok := v.(*binaryExpr); ok {
return x.op == b.op &&
s.subsumes(x.left, b.left) &&
s.subsumes(x.right, b.right)
}
return isBottom(v)
}
// structural equivalence
func (x *listComprehension) subsumesImpl(s *subsumer, v value) bool {
if b, ok := v.(*listComprehension); ok {
return s.subsumes(x.clauses, b.clauses)
}
return isBottom(v)
}
// structural equivalence
func (x *structComprehension) subsumesImpl(s *subsumer, v value) bool {
if b, ok := v.(*structComprehension); ok {
return s.subsumes(x.clauses, b.clauses)
}
return isBottom(v)
}
// structural equivalence
func (x *fieldComprehension) subsumesImpl(s *subsumer, v value) bool {
if b, ok := v.(*fieldComprehension); ok {
return s.subsumes(x.key, b.key) &&
s.subsumes(x.val, b.val) &&
!x.opt && b.opt &&
x.def == b.def
}
return isBottom(v)
}
// structural equivalence
func (x *yield) subsumesImpl(s *subsumer, v value) bool {
if b, ok := v.(*yield); ok {
return s.subsumes(x.value, b.value)
}
return isBottom(v)
}
// structural equivalence
func (x *feed) subsumesImpl(s *subsumer, v value) bool {
if b, ok := v.(*feed); ok {
return s.subsumes(x.source, b.source) &&
s.subsumes(x.fn, b.fn)
}
return isBottom(v)
}
// structural equivalence
func (x *guard) subsumesImpl(s *subsumer, v value) bool {
if b, ok := v.(*guard); ok {
return s.subsumes(x.condition, b.condition) &&
s.subsumes(x.value, b.value)
}
return isBottom(v)
}