| // Copyright 2021 CUE Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // Package eval contains the high level CUE evaluation strategy. |
| // |
| // CUE allows for a significant amount of freedom in order of evaluation due to |
| // the commutativity of the unification operation. This package implements one |
| // of the possible strategies. |
| package adt |
| |
| // TODO: |
| // - result should be nodeContext: this allows optionals info to be extracted |
| // and computed. |
| // |
| |
| import ( |
| "fmt" |
| "html/template" |
| "strings" |
| |
| "cuelang.org/go/cue/ast" |
| "cuelang.org/go/cue/errors" |
| "cuelang.org/go/cue/token" |
| ) |
| |
| // TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO |
| // |
| // - Reuse work from previous cycles. For instance, if we can guarantee that a |
| // value is always correct for partial results, we can just process the arcs |
| // going from Partial to Finalized, without having to reevaluate the value. |
| // |
| // - Test closedness far more thoroughly. |
| // |
| |
| func NewUnifier(r Runtime) *Unifier { |
| return &Unifier{r: r, index: r} |
| } |
| |
| type Stats struct { |
| DisjunctCount int |
| UnifyCount int |
| |
| Freed int |
| Retained int |
| Reused int |
| Allocs int |
| } |
| |
| var stats = template.Must(template.New("stats").Parse(`{{"" -}} |
| Freed: {{.Freed}} |
| Reused: {{.Reused}} |
| Allocs: {{.Allocs}} |
| Retain: {{.Retained}} |
| |
| Unifications: {{.UnifyCount}} |
| Disjuncts: {{.DisjunctCount}}`)) |
| |
| func (s *Stats) String() string { |
| buf := &strings.Builder{} |
| _ = stats.Execute(buf, s) |
| return buf.String() |
| } |
| |
| func (e *Unifier) Stats() *Stats { |
| return &e.stats |
| } |
| |
| // TODO: Note: NewContext takes essentially a cue.Value. By making this |
| // type more central, we can perhaps avoid context creation. |
| |
| // func NewContext(r Runtime, v *Vertex) *OpContext { |
| // e := NewUnifier(r) |
| // return e.NewContext(v) |
| // } |
| |
| var structSentinel = &StructMarker{} |
| |
| var incompleteSentinel = &Bottom{ |
| Code: IncompleteError, |
| Err: errors.Newf(token.NoPos, "incomplete"), |
| } |
| |
| // A Unifier implements a strategy for CUE's unification operation. It must |
| // handle the following aspects of CUE evaluation: |
| // |
| // - Structural and reference cycles |
| // - Non-monotic validation |
| // - Fixed-point computation of comprehension |
| // |
| type Unifier struct { |
| r Runtime |
| index StringIndexer |
| |
| stats Stats |
| |
| freeListNode *nodeContext |
| } |
| |
| func (e *Unifier) Eval(v *Vertex) errors.Error { |
| if v.BaseValue == nil { |
| ctx := NewContext(e.r, v) |
| e.Unify(ctx, v, Partial) |
| } |
| |
| // extract error if needed. |
| return nil |
| } |
| |
| // Evaluate returns the evaluated value associated with v. It may return a |
| // partial result. That is, if v was not yet unified, it may return a |
| // concrete value that must be the result assuming the configuration has no |
| // errors. |
| // |
| // This semantics allows CUE to break reference cycles in a straightforward |
| // manner. |
| // |
| // Vertex v must still be evaluated at some point to catch the underlying |
| // error. |
| // |
| // TODO: return *Vertex |
| func (e *Unifier) Evaluate(c *OpContext, v *Vertex) Value { |
| return e.evaluate(c, v, Partial) |
| } |
| |
| func (e *Unifier) evaluate(c *OpContext, v *Vertex, state VertexStatus) Value { |
| if v.BaseValue == nil || v.BaseValue == cycle { |
| // Use node itself to allow for cycle detection. |
| e.Unify(c, v, state) |
| } |
| |
| if n := v.state; n != nil { |
| if n.errs != nil && !n.errs.IsIncomplete() { |
| return n.errs |
| } |
| // TODO: consider enabling this |
| // if n.scalar != nil { |
| // return n.scalar |
| // } |
| } |
| |
| switch x := v.BaseValue.(type) { |
| case *Bottom: |
| return x |
| |
| case nil: |
| if v.state != nil { |
| switch x := v.state.getValidators().(type) { |
| case Value: |
| return x |
| default: |
| w := *v |
| w.BaseValue = x |
| return &w |
| } |
| } |
| panic("nil value") |
| } |
| |
| if v.status < Finalized && v.state != nil { |
| v.state.addNotify(c.vertex) |
| } |
| |
| return v |
| } |
| |
| // Unify fully unifies all values of a Vertex to completion and stores |
| // the result in the Vertex. If Unify was called on v before it returns |
| // the cached results. |
| func (e *Unifier) Unify(c *OpContext, v *Vertex, state VertexStatus) { |
| // defer c.PopVertex(c.PushVertex(v)) |
| |
| if state <= v.Status() { |
| if v.Status() != Partial && state != Partial { |
| return |
| } |
| } |
| |
| n := v.getNodeContext(c) |
| defer v.freeNode(n) |
| |
| switch v.Status() { |
| case Evaluating: |
| return |
| |
| case EvaluatingArcs: |
| return |
| |
| case 0: |
| if v.Label.IsDef() { |
| v.Closed = true |
| } |
| |
| if v.Parent != nil { |
| if v.Parent.Closed { |
| v.Closed = true |
| } |
| } |
| |
| // TODO(perf): ideally we should always perform a closedness check if |
| // state is Finalized. This is currently not possible when computing a |
| // partial disjunction as the closedness information is not yet |
| // complete, possibly leading to a disjunct to be rejected prematurely. |
| // It is probably possible to fix this if we could add StructInfo |
| // structures demarked per conjunct. |
| // |
| // In practice this should not be a problem: when disjuncts originate |
| // from the same disjunct, they will have the same StructInfos, and thus |
| // Equal is able to equate them even in the precense of optional field. |
| // In general, combining any limited set of disjuncts will soon reach |
| // a fixed point where duplicate elements can be eliminated this way. |
| // |
| // Note that not checking closedness is irrelevant for disjunctions of |
| // scalars. This means it also doesn't hurt performance where structs |
| // have a discriminator field (e.g. Kubernetes). We should take care, |
| // though, that any potential performance issues are eliminated for |
| // Protobuf-like oneOf fields. |
| ignore := state != Finalized || n.skipNonMonotonicChecks() |
| |
| if !v.Label.IsInt() && v.Parent != nil && !ignore { |
| // Visit arcs recursively to validate and compute error. |
| if _, err := verifyArc2(c, v.Label, v, v.Closed); err != nil { |
| // Record error in child node to allow recording multiple |
| // conflicts at the appropriate place, to allow valid fields to |
| // be represented normally and, most importantly, to avoid |
| // recursive processing of a disallowed field. |
| v.SetValue(c, Finalized, err) |
| return |
| } |
| } |
| |
| defer c.PopArc(c.PushArc(v)) |
| |
| e.stats.UnifyCount++ |
| |
| // Clear any remaining error. |
| if err := c.Err(); err != nil { |
| panic("uncaught error") |
| } |
| |
| // Set the cache to a cycle error to ensure a cyclic reference will result |
| // in an error if applicable. A cyclic error may be ignored for |
| // non-expression references. The cycle error may also be removed as soon |
| // as there is evidence what a correct value must be, but before all |
| // validation has taken place. |
| v.BaseValue = cycle |
| |
| v.UpdateStatus(Evaluating) |
| |
| // If the result is a struct, it needs to be closed if: |
| // 1) this node introduces a definition |
| // 2) this node is a child of a node that introduces a definition, |
| // recursively. |
| // 3) this node embeds a closed struct. |
| |
| for _, x := range v.Conjuncts { |
| // TODO: needed for reentrancy. Investigate usefulness for cycle |
| // detection. |
| n.addExprConjunct(x) |
| } |
| |
| fallthrough |
| |
| case Partial: |
| defer c.PopArc(c.PushArc(v)) |
| |
| v.status = Evaluating |
| |
| // Use maybeSetCache for cycle breaking |
| for n.maybeSetCache(); n.expandOne(); n.maybeSetCache() { |
| } |
| |
| n.doNotify() |
| |
| if !n.done() { |
| switch { |
| case len(n.disjunctions) > 0 && v.BaseValue == cycle: |
| // We disallow entering computations of disjunctions with |
| // incomplete data. |
| if state == Finalized { |
| b := c.NewErrf("incomplete cause disjunction") |
| b.Code = IncompleteError |
| n.errs = CombineErrors(nil, n.errs, b) |
| v.SetValue(n.ctx, Finalized, b) |
| } else { |
| n.node.UpdateStatus(Partial) |
| } |
| return |
| |
| case state <= Partial: |
| n.node.UpdateStatus(Partial) |
| return |
| |
| case state <= AllArcs: |
| c.AddBottom(n.incompleteErrors()) |
| n.node.UpdateStatus(Partial) |
| return |
| } |
| } |
| |
| if s := v.Status(); state <= s { |
| // We have found a partial result. There may still be errors |
| // down the line which may result from further evaluating this |
| // field, but that will be caught when evaluating this field |
| // for real. |
| |
| // This also covers the case where a recursive evaluation triggered |
| // this field to become finalized in the mean time. In that case |
| // we can avoid running another expandDisjuncts. |
| return |
| } |
| |
| // Disjunctions should always be finalized. If there are nested |
| // disjunctions the last one should be finalized. |
| disState := state |
| if len(n.disjunctions) > 0 && disState != Finalized { |
| disState = Finalized |
| } |
| n.expandDisjuncts(disState, n, maybeDefault, false) |
| |
| // If the state has changed, it is because a disjunct has been run. In this case, our node will have completed, and it will |
| // set a value soon. |
| v.state = n // alternatively, set to nil |
| |
| for _, d := range n.disjuncts { |
| d.free() |
| } |
| |
| switch len(n.disjuncts) { |
| case 0: |
| case 1: |
| x := n.disjuncts[0].result |
| x.state = nil |
| *v = x |
| |
| default: |
| d := n.createDisjunct() |
| v.BaseValue = d |
| // The conjuncts will have too much information. Better have no |
| // information than incorrect information. |
| for _, d := range d.Values { |
| // We clear the conjuncts for now. As these disjuncts are for API |
| // use only, we will fill them out when necessary (using Defaults). |
| d.Conjuncts = nil |
| |
| // TODO: use a more principled form of dereferencing. For instance, |
| // disjuncts could already be assumed to be the given Vertex, and |
| // the the main vertex could be dereferenced during evaluation. |
| for _, a := range d.Arcs { |
| for _, x := range a.Conjuncts { |
| // All the environments for embedded structs need to be |
| // dereferenced. |
| for env := x.Env; env != nil && env.Vertex == v; env = env.Up { |
| env.Vertex = d |
| } |
| } |
| } |
| } |
| v.Arcs = nil |
| // v.Structs = nil // TODO: should we keep or discard the Structs? |
| // TODO: how to represent closedness information? Do we need it? |
| } |
| |
| if state != Finalized { |
| return |
| } |
| |
| if v.BaseValue == nil { |
| v.BaseValue = n.getValidators() |
| } |
| |
| // Free memory here? |
| v.UpdateStatus(Finalized) |
| |
| case AllArcs: |
| defer c.PopArc(c.PushArc(v)) |
| |
| n.completeArcs(state) |
| |
| case Finalized: |
| } |
| } |
| |
| func (n *nodeContext) doNotify() { |
| if n.errs != nil && len(n.notify) > 0 { |
| for _, v := range n.notify { |
| if v.state == nil { |
| if b, ok := v.BaseValue.(*Bottom); ok { |
| v.BaseValue = CombineErrors(nil, b, n.errs) |
| } else { |
| v.BaseValue = n.errs |
| } |
| } else { |
| v.state.addBottom(n.errs) |
| } |
| } |
| n.notify = n.notify[:0] |
| } |
| } |
| |
| func isStruct(v *Vertex) bool { |
| _, ok := v.BaseValue.(*StructMarker) |
| return ok |
| } |
| |
| func (n *nodeContext) postDisjunct(state VertexStatus) { |
| ctx := n.ctx |
| |
| for { |
| // Use maybeSetCache for cycle breaking |
| for n.maybeSetCache(); n.expandOne(); n.maybeSetCache() { |
| } |
| |
| if aList, id := n.addLists(ctx); aList != nil { |
| n.updateNodeType(ListKind, aList, id) |
| } else { |
| break |
| } |
| } |
| |
| if n.aStruct != nil { |
| n.updateNodeType(StructKind, n.aStruct, n.aStructID) |
| } |
| |
| switch err := n.getErr(); { |
| case err != nil: |
| n.node.BaseValue = err |
| n.errs = nil |
| |
| default: |
| if n.node.BaseValue == cycle { |
| if !n.done() { |
| n.node.BaseValue = n.incompleteErrors() |
| } else { |
| n.node.BaseValue = nil |
| } |
| } |
| |
| // We are no longer evaluating. |
| // n.node.UpdateStatus(Partial) |
| n.node.UpdateStatus(Evaluating) |
| |
| // Either set to Conjunction or error. |
| // TODO: verify and simplify the below code to determine whether |
| // something is a struct. |
| markStruct := false |
| if n.aStruct != nil { |
| markStruct = true |
| } else if len(n.node.Structs) > 0 { |
| markStruct = n.kind&StructKind != 0 && !n.hasTop |
| } |
| v := n.node.Value() |
| if n.node.BaseValue == nil && markStruct { |
| n.node.BaseValue = &StructMarker{} |
| v = n.node |
| } |
| if v != nil && IsConcrete(v) { |
| // Also check when we already have errors as we may find more |
| // serious errors and would like to know about all errors anyway. |
| |
| if n.lowerBound != nil { |
| if b := ctx.Validate(n.lowerBound, v); b != nil { |
| // TODO(errors): make Validate return boolean and generate |
| // optimized conflict message. Also track and inject IDs |
| // to determine origin location.s |
| if e, _ := b.Err.(*ValueError); e != nil { |
| e.AddPosition(n.lowerBound) |
| e.AddPosition(v) |
| } |
| n.addBottom(b) |
| } |
| } |
| if n.upperBound != nil { |
| if b := ctx.Validate(n.upperBound, v); b != nil { |
| // TODO(errors): make Validate return boolean and generate |
| // optimized conflict message. Also track and inject IDs |
| // to determine origin location.s |
| if e, _ := b.Err.(*ValueError); e != nil { |
| e.AddPosition(n.upperBound) |
| e.AddPosition(v) |
| } |
| n.addBottom(b) |
| } |
| } |
| // MOVE BELOW |
| // TODO(perf): only delay processing of actual non-monotonic checks. |
| skip := n.skipNonMonotonicChecks() |
| if v := n.node.Value(); v != nil && IsConcrete(v) && !skip { |
| for _, v := range n.checks { |
| // TODO(errors): make Validate return bottom and generate |
| // optimized conflict message. Also track and inject IDs |
| // to determine origin location.s |
| if b := ctx.Validate(v, n.node); b != nil { |
| n.addBottom(b) |
| } |
| } |
| } |
| } else if state == Finalized { |
| n.node.BaseValue = n.getValidators() |
| } |
| |
| if v == nil { |
| break |
| } |
| |
| switch { |
| case v.Kind() == ListKind: |
| for _, a := range n.node.Arcs { |
| if a.Label.Typ() == StringLabel { |
| n.addErr(ctx.Newf("list may not have regular fields")) |
| // TODO(errors): add positions for list and arc definitions. |
| |
| } |
| } |
| |
| // case !isStruct(n.node) && v.Kind() != BottomKind: |
| // for _, a := range n.node.Arcs { |
| // if a.Label.IsRegular() { |
| // n.addErr(errors.Newf(token.NoPos, |
| // // TODO(errors): add positions of non-struct values and arcs. |
| // "cannot combine scalar values with arcs")) |
| // } |
| // } |
| } |
| } |
| |
| if err := n.getErr(); err != nil { |
| if b, _ := n.node.BaseValue.(*Bottom); b != nil { |
| err = CombineErrors(nil, b, err) |
| } |
| n.node.BaseValue = err |
| // TODO: add return: if evaluation of arcs is important it can be done |
| // later. Logically we're done. |
| } |
| |
| n.completeArcs(state) |
| } |
| |
| func (n *nodeContext) incompleteErrors() *Bottom { |
| // collect incomplete errors. |
| var err *Bottom // n.incomplete |
| for _, d := range n.dynamicFields { |
| err = CombineErrors(nil, err, d.err) |
| } |
| for _, c := range n.forClauses { |
| err = CombineErrors(nil, err, c.err) |
| } |
| for _, c := range n.ifClauses { |
| err = CombineErrors(nil, err, c.err) |
| } |
| for _, x := range n.exprs { |
| err = CombineErrors(nil, err, x.err) |
| } |
| if err == nil { |
| // safeguard. |
| err = incompleteSentinel |
| } |
| return err |
| } |
| |
| func (n *nodeContext) completeArcs(state VertexStatus) { |
| |
| if state <= AllArcs { |
| n.node.UpdateStatus(AllArcs) |
| return |
| } |
| |
| n.node.UpdateStatus(EvaluatingArcs) |
| |
| ctx := n.ctx |
| |
| if cyclic := n.hasCycle && !n.hasNonCycle; cyclic { |
| n.node.BaseValue = CombineErrors(nil, |
| n.node.Value(), |
| &Bottom{ |
| Code: StructuralCycleError, |
| Err: ctx.Newf("structural cycle"), |
| Value: n.node.Value(), |
| // TODO: probably, this should have the referenced arc. |
| }) |
| // Don't process Arcs. This is mostly to ensure that no Arcs with |
| // an Unprocessed status remain in the output. |
| n.node.Arcs = nil |
| } else { |
| // Visit arcs recursively to validate and compute error. |
| for _, a := range n.node.Arcs { |
| // Call UpdateStatus here to be absolutely sure the status is set |
| // correctly and that we are not regressing. |
| n.node.UpdateStatus(EvaluatingArcs) |
| n.ctx.Unifier.Unify(ctx, a, state) |
| // Don't set the state to Finalized if the child arcs are not done. |
| if state == Finalized && a.status < Finalized { |
| state = AllArcs |
| } |
| if err, _ := a.BaseValue.(*Bottom); err != nil { |
| n.node.AddChildError(err) |
| } |
| } |
| } |
| |
| n.node.UpdateStatus(state) |
| } |
| |
| // TODO: this is now a sentinel. Use a user-facing error that traces where |
| // the cycle originates. |
| var cycle = &Bottom{ |
| Err: errors.Newf(token.NoPos, "cycle error"), |
| Code: CycleError, |
| } |
| |
| func (n *nodeContext) createDisjunct() *Disjunction { |
| a := make([]*Vertex, len(n.disjuncts)) |
| p := 0 |
| hasDefaults := false |
| for i, x := range n.disjuncts { |
| v := new(Vertex) |
| *v = x.result |
| v.state = nil |
| switch x.defaultMode { |
| case isDefault: |
| a[i] = a[p] |
| a[p] = v |
| p++ |
| hasDefaults = true |
| |
| case notDefault: |
| hasDefaults = true |
| fallthrough |
| case maybeDefault: |
| a[i] = v |
| } |
| } |
| return &Disjunction{ |
| Values: a, |
| NumDefaults: p, |
| HasDefaults: hasDefaults, |
| } |
| } |
| |
| type arcKey struct { |
| arc *Vertex |
| id CloseInfo |
| } |
| |
| // A nodeContext is used to collate all conjuncts of a value to facilitate |
| // unification. Conceptually order of unification does not matter. However, |
| // order has relevance when performing checks of non-monotic properities. Such |
| // checks should only be performed once the full value is known. |
| type nodeContext struct { |
| nextFree *nodeContext |
| refCount int |
| |
| ctx *OpContext |
| node *Vertex |
| |
| // TODO: (this is CL is first step) |
| // filter *Vertex a subset of composite with concrete fields for |
| // bloom-like filtering of disjuncts. We should first verify, however, |
| // whether some breath-first search gives sufficient performance, as this |
| // should already ensure a quick-fail for struct disjunctions with |
| // discriminators. |
| |
| arcMap []arcKey |
| |
| // snapshot holds the last value of the vertex before calling postDisjunct. |
| snapshot Vertex |
| |
| // Result holds the last evaluated value of the vertex after calling |
| // postDisjunct. |
| result Vertex |
| |
| // Current value (may be under construction) |
| scalar Value // TODO: use Value in node. |
| scalarID CloseInfo |
| |
| // Concrete conjuncts |
| kind Kind |
| kindExpr Expr // expr that adjust last value (for error reporting) |
| kindID CloseInfo // for error tracing |
| lowerBound *BoundValue // > or >= |
| upperBound *BoundValue // < or <= |
| checks []Validator // BuiltinValidator, other bound values. |
| errs *Bottom |
| |
| // notify is used to communicate errors in cyclic dependencies. |
| // TODO: also use this to communicate increasingly more concrete values. |
| notify []*Vertex |
| |
| // Struct information |
| dynamicFields []envDynamic |
| ifClauses []envYield |
| forClauses []envYield |
| aStruct Expr |
| aStructID CloseInfo |
| |
| // Expression conjuncts |
| lists []envList |
| vLists []*Vertex |
| exprs []envExpr |
| |
| hasTop bool |
| hasCycle bool // has conjunct with structural cycle |
| hasNonCycle bool // has conjunct without structural cycle |
| |
| // Disjunction handling |
| disjunctions []envDisjunct |
| defaultMode defaultMode |
| disjuncts []*nodeContext |
| buffer []*nodeContext |
| disjunctErrs []*Bottom |
| } |
| |
| func (n *nodeContext) addNotify(v *Vertex) { |
| if v != nil { |
| n.notify = append(n.notify, v) |
| } |
| } |
| |
| func (n *nodeContext) clone() *nodeContext { |
| d := n.ctx.Unifier.newNodeContext(n.ctx, n.node) |
| |
| d.refCount++ |
| |
| d.ctx = n.ctx |
| d.node = n.node |
| |
| d.scalar = n.scalar |
| d.scalarID = n.scalarID |
| d.kind = n.kind |
| d.kindExpr = n.kindExpr |
| d.kindID = n.kindID |
| d.aStruct = n.aStruct |
| d.aStructID = n.aStructID |
| d.hasTop = n.hasTop |
| |
| d.lowerBound = n.lowerBound |
| d.upperBound = n.upperBound |
| d.errs = n.errs |
| d.hasTop = n.hasTop |
| d.hasCycle = n.hasCycle |
| d.hasNonCycle = n.hasNonCycle |
| |
| // d.arcMap = append(d.arcMap, n.arcMap...) // XXX add? |
| d.notify = append(d.notify, n.notify...) |
| d.checks = append(d.checks, n.checks...) |
| d.dynamicFields = append(d.dynamicFields, n.dynamicFields...) |
| d.ifClauses = append(d.ifClauses, n.ifClauses...) |
| d.forClauses = append(d.forClauses, n.forClauses...) |
| d.lists = append(d.lists, n.lists...) |
| d.vLists = append(d.vLists, n.vLists...) |
| d.exprs = append(d.exprs, n.exprs...) |
| // No need to clone d.disjunctions |
| |
| return d |
| } |
| |
| func (e *Unifier) newNodeContext(ctx *OpContext, node *Vertex) *nodeContext { |
| if n := e.freeListNode; n != nil { |
| e.stats.Reused++ |
| e.freeListNode = n.nextFree |
| |
| *n = nodeContext{ |
| ctx: ctx, |
| node: node, |
| kind: TopKind, |
| arcMap: n.arcMap[:0], |
| checks: n.checks[:0], |
| dynamicFields: n.dynamicFields[:0], |
| ifClauses: n.ifClauses[:0], |
| forClauses: n.forClauses[:0], |
| lists: n.lists[:0], |
| vLists: n.vLists[:0], |
| exprs: n.exprs[:0], |
| disjunctions: n.disjunctions[:0], |
| disjunctErrs: n.disjunctErrs[:0], |
| disjuncts: n.disjuncts[:0], |
| buffer: n.buffer[:0], |
| } |
| |
| return n |
| } |
| e.stats.Allocs++ |
| |
| return &nodeContext{ |
| ctx: ctx, |
| node: node, |
| kind: TopKind, |
| } |
| } |
| |
| func (v *Vertex) getNodeContext(c *OpContext) *nodeContext { |
| if v.state == nil { |
| if v.status == Finalized { |
| return nil |
| } |
| v.state = c.Unifier.newNodeContext(c, v) |
| } else if v.state.node != v { |
| panic("getNodeContext: nodeContext out of sync") |
| } |
| v.state.refCount++ |
| return v.state |
| } |
| |
| func (v *Vertex) freeNode(n *nodeContext) { |
| if n == nil { |
| return |
| } |
| if n.node != v { |
| panic("freeNode: unpaired free") |
| } |
| if v.state != nil && v.state != n { |
| panic("freeNode: nodeContext out of sync") |
| } |
| if n.refCount--; n.refCount == 0 { |
| if v.status == Finalized { |
| v.freeNodeState() |
| } else { |
| n.ctx.Unifier.stats.Retained++ |
| } |
| } |
| } |
| |
| func (v *Vertex) freeNodeState() { |
| if v.state == nil { |
| return |
| } |
| state := v.state |
| v.state = nil |
| |
| state.ctx.Unifier.freeNodeContext(state) |
| } |
| |
| func (n *nodeContext) free() { |
| if n.refCount--; n.refCount == 0 { |
| n.ctx.Unifier.freeNodeContext(n) |
| } |
| } |
| |
| func (e *Unifier) freeNodeContext(n *nodeContext) { |
| e.stats.Freed++ |
| n.nextFree = e.freeListNode |
| e.freeListNode = n |
| n.node = nil |
| n.refCount = 0 |
| } |
| |
| // TODO(perf): return a dedicated ConflictError that can track original |
| // positions on demand. |
| func (n *nodeContext) addConflict( |
| v1, v2 Node, |
| k1, k2 Kind, |
| id1, id2 CloseInfo) { |
| |
| ctx := n.ctx |
| |
| var err *ValueError |
| if k1 == k2 { |
| err = ctx.NewPosf(token.NoPos, |
| "conflicting values %s and %s", ctx.Str(v1), ctx.Str(v2)) |
| } else { |
| err = ctx.NewPosf(token.NoPos, |
| "conflicting values %s and %s (mismatched types %s and %s)", |
| ctx.Str(v1), ctx.Str(v2), k1, k2) |
| } |
| |
| err.AddPosition(v1) |
| err.AddPosition(v2) |
| err.AddClosedPositions(id1) |
| err.AddClosedPositions(id2) |
| |
| n.addErr(err) |
| } |
| |
| func (n *nodeContext) updateNodeType(k Kind, v Expr, id CloseInfo) bool { |
| ctx := n.ctx |
| kind := n.kind & k |
| |
| switch { |
| case n.kind == BottomKind, |
| k == BottomKind: |
| return false |
| |
| case kind == BottomKind: |
| if n.kindExpr != nil { |
| n.addConflict(n.kindExpr, v, n.kind, k, n.kindID, id) |
| } else { |
| n.addErr(ctx.Newf( |
| "conflicting value %s (mismatched types %s and %s)", |
| ctx.Str(v), n.kind, k)) |
| } |
| } |
| |
| if n.kind != kind || n.kindExpr == nil { |
| n.kindExpr = v |
| } |
| n.kind = kind |
| return kind != BottomKind |
| } |
| |
| func (n *nodeContext) done() bool { |
| return len(n.dynamicFields) == 0 && |
| len(n.ifClauses) == 0 && |
| len(n.forClauses) == 0 && |
| len(n.exprs) == 0 |
| } |
| |
| // hasErr is used to determine if an evaluation path, for instance a single |
| // path after expanding all disjunctions, has an error. |
| func (n *nodeContext) hasErr() bool { |
| if n.node.ChildErrors != nil { |
| return true |
| } |
| if n.node.Status() > Evaluating && n.node.IsErr() { |
| return true |
| } |
| return n.ctx.HasErr() || n.errs != nil |
| } |
| |
| func (n *nodeContext) getErr() *Bottom { |
| n.errs = CombineErrors(nil, n.errs, n.ctx.Err()) |
| return n.errs |
| } |
| |
| // getValidators sets the vertex' Value in case there was no concrete value. |
| func (n *nodeContext) getValidators() BaseValue { |
| ctx := n.ctx |
| |
| a := []Value{} |
| // if n.node.Value != nil { |
| // a = append(a, n.node.Value) |
| // } |
| kind := TopKind |
| if n.lowerBound != nil { |
| a = append(a, n.lowerBound) |
| kind &= n.lowerBound.Kind() |
| } |
| if n.upperBound != nil { |
| a = append(a, n.upperBound) |
| kind &= n.upperBound.Kind() |
| } |
| for _, c := range n.checks { |
| // Drop !=x if x is out of bounds with another bound. |
| if b, _ := c.(*BoundValue); b != nil && b.Op == NotEqualOp { |
| if n.upperBound != nil && |
| SimplifyBounds(ctx, n.kind, n.upperBound, b) != nil { |
| continue |
| } |
| if n.lowerBound != nil && |
| SimplifyBounds(ctx, n.kind, n.lowerBound, b) != nil { |
| continue |
| } |
| } |
| a = append(a, c) |
| kind &= c.Kind() |
| } |
| if kind&^n.kind != 0 { |
| a = append(a, &BasicType{K: n.kind}) |
| } |
| |
| var v BaseValue |
| switch len(a) { |
| case 0: |
| // Src is the combined input. |
| v = &BasicType{K: n.kind} |
| |
| if len(n.node.Structs) > 0 { |
| v = structSentinel |
| |
| } |
| |
| case 1: |
| v = a[0].(Value) // remove cast |
| |
| default: |
| v = &Conjunction{Values: a} |
| } |
| |
| return v |
| } |
| |
| // TODO: this function can probably go as this is now handled in the nodeContext. |
| func (n *nodeContext) maybeSetCache() { |
| if n.node.Status() > Partial { // n.node.BaseValue != nil |
| return |
| } |
| if n.scalar != nil { |
| n.node.SetValue(n.ctx, Partial, n.scalar) |
| } |
| // NOTE: this is now handled by associating the nodeContext |
| // if n.errs != nil { |
| // n.node.SetValue(n.ctx, Partial, n.errs) |
| // } |
| } |
| |
| type envExpr struct { |
| c Conjunct |
| err *Bottom |
| } |
| |
| type envDynamic struct { |
| env *Environment |
| field *DynamicField |
| id CloseInfo |
| err *Bottom |
| } |
| |
| type envYield struct { |
| env *Environment |
| yield Yielder |
| id CloseInfo |
| err *Bottom |
| } |
| |
| type envList struct { |
| env *Environment |
| list *ListLit |
| n int64 // recorded length after evaluator |
| elipsis *Ellipsis |
| id CloseInfo |
| } |
| |
| func (n *nodeContext) addBottom(b *Bottom) { |
| n.errs = CombineErrors(nil, n.errs, b) |
| // TODO(errors): consider doing this |
| // n.kindExpr = n.errs |
| // n.kind = 0 |
| } |
| |
| func (n *nodeContext) addErr(err errors.Error) { |
| if err != nil { |
| n.addBottom(&Bottom{Err: err}) |
| } |
| } |
| |
| // addExprConjuncts will attempt to evaluate an Expr and insert the value |
| // into the nodeContext if successful or queue it for later evaluation if it is |
| // incomplete or is not value. |
| func (n *nodeContext) addExprConjunct(v Conjunct) { |
| env := v.Env |
| id := v.CloseInfo |
| |
| switch x := v.Expr().(type) { |
| case *Vertex: |
| if x.IsData() { |
| n.addValueConjunct(env, x, id) |
| } else { |
| n.addVertexConjuncts(env, id, x, x) |
| } |
| |
| case Value: |
| n.addValueConjunct(env, x, id) |
| |
| case *BinaryExpr: |
| if x.Op == AndOp { |
| n.addExprConjunct(MakeConjunct(env, x.X, id)) |
| n.addExprConjunct(MakeConjunct(env, x.Y, id)) |
| } else { |
| n.evalExpr(v) |
| } |
| |
| case *StructLit: |
| n.addStruct(env, x, id) |
| |
| case *ListLit: |
| n.lists = append(n.lists, envList{env: env, list: x, id: id}) |
| |
| case *DisjunctionExpr: |
| n.addDisjunction(env, x, id) |
| |
| default: |
| // Must be Resolver or Evaluator. |
| n.evalExpr(v) |
| } |
| } |
| |
| // evalExpr is only called by addExprConjunct. If an error occurs, it records |
| // the error in n and returns nil. |
| func (n *nodeContext) evalExpr(v Conjunct) { |
| // Require an Environment. |
| ctx := n.ctx |
| |
| closeID := v.CloseInfo |
| |
| // TODO: see if we can do without these counters. |
| for _, d := range v.Env.Deref { |
| d.EvalCount++ |
| } |
| for _, d := range v.Env.Cycles { |
| d.SelfCount++ |
| } |
| defer func() { |
| for _, d := range v.Env.Deref { |
| d.EvalCount-- |
| } |
| for _, d := range v.Env.Cycles { |
| d.SelfCount++ |
| } |
| }() |
| |
| switch x := v.Expr().(type) { |
| case Resolver: |
| arc, err := ctx.Resolve(v.Env, x) |
| if err != nil && !err.IsIncomplete() { |
| n.addBottom(err) |
| break |
| } |
| if arc == nil { |
| n.exprs = append(n.exprs, envExpr{v, err}) |
| break |
| } |
| |
| n.addVertexConjuncts(v.Env, v.CloseInfo, v.Expr(), arc) |
| |
| case Evaluator: |
| // Interpolation, UnaryExpr, BinaryExpr, CallExpr |
| // Could be unify? |
| val, complete := ctx.Evaluate(v.Env, v.Expr()) |
| if !complete { |
| b, _ := val.(*Bottom) |
| n.exprs = append(n.exprs, envExpr{v, b}) |
| break |
| } |
| |
| if v, ok := val.(*Vertex); ok { |
| // Handle generated disjunctions (as in the 'or' builtin). |
| // These come as a Vertex, but should not be added as a value. |
| b, ok := v.BaseValue.(*Bottom) |
| if ok && b.IsIncomplete() && len(v.Conjuncts) > 0 { |
| for _, c := range v.Conjuncts { |
| c.CloseInfo = closeID |
| n.addExprConjunct(c) |
| } |
| break |
| } |
| } |
| |
| // TODO: also to through normal Vertex handling here. At the moment |
| // addValueConjunct handles StructMarker.NeedsClose, as this is always |
| // only needed when evaluation an Evaluator, and not a Resolver. |
| // The two code paths should ideally be merged once this separate |
| // mechanism is eliminated. |
| // |
| // if arc, ok := val.(*Vertex); ok && !arc.IsData() { |
| // n.addVertexConjuncts(v.Env, closeID, v.Expr(), arc) |
| // break |
| // } |
| |
| // TODO: insert in vertex as well |
| n.addValueConjunct(v.Env, val, closeID) |
| |
| default: |
| panic(fmt.Sprintf("unknown expression of type %T", x)) |
| } |
| } |
| |
| func (n *nodeContext) addVertexConjuncts(env *Environment, closeInfo CloseInfo, x Expr, arc *Vertex) { |
| |
| // We need to ensure that each arc is only unified once (or at least) a |
| // bounded time, witch each conjunct. Comprehensions, for instance, may |
| // distribute a value across many values that get unified back into the |
| // same value. If such a value is a disjunction, than a disjunction of N |
| // disjuncts will result in a factor N more unifications for each |
| // occurrence of such value, resulting in exponential running time. This |
| // is especially common values that are used as a type. |
| // |
| // However, unification is idempotent, so each such conjunct only needs |
| // to be unified once. This cache checks for this and prevents an |
| // exponential blowup in such case. |
| // |
| // TODO(perf): this cache ensures the conjuncts of an arc at most once |
| // per ID. However, we really need to add the conjuncts of an arc only |
| // once total, and then add the close information once per close ID |
| // (pointer can probably be shared). Aside from being more performant, |
| // this is probably the best way to guarantee that conjunctions are |
| // linear in this case. |
| key := arcKey{arc, closeInfo} |
| for _, k := range n.arcMap { |
| if key == k { |
| return |
| } |
| } |
| n.arcMap = append(n.arcMap, key) |
| |
| // Pass detection of structural cycles from parent to children. |
| cyclic := false |
| if env != nil { |
| // If a reference is in a tainted set, so is the value it refers to. |
| cyclic = env.Cyclic |
| } |
| |
| status := arc.Status() |
| |
| switch status { |
| case Evaluating: |
| // Reference cycle detected. We have reached a fixed point and |
| // adding conjuncts at this point will not change the value. Also, |
| // continuing to pursue this value will result in an infinite loop. |
| |
| // TODO: add a mechanism so that the computation will only have to |
| // be done once? |
| |
| if arc == n.node { |
| // TODO: we could use node sharing here. This may avoid an |
| // exponential blowup during evaluation, like is possible with |
| // YAML. |
| return |
| } |
| |
| case EvaluatingArcs: |
| // Structural cycle detected. Continue evaluation as usual, but |
| // keep track of whether any other conjuncts without structural |
| // cycles are added. If not, evaluation of child arcs will end |
| // with this node. |
| |
| // For the purpose of determining whether at least one non-cyclic |
| // conjuncts exists, we consider all conjuncts of a cyclic conjuncts |
| // also cyclic. |
| |
| cyclic = true |
| n.hasCycle = true |
| |
| // As the EvaluatingArcs mechanism bypasses the self-reference |
| // mechanism, we need to separately keep track of it here. |
| // If this (originally) is a self-reference node, adding them |
| // will result in recursively adding the same reference. For this |
| // we also mark the node as evaluating. |
| if arc.SelfCount > 0 { |
| return |
| } |
| |
| // This count is added for values that are directly added below. |
| // The count is handled separately for delayed values. |
| arc.SelfCount++ |
| defer func() { arc.SelfCount-- }() |
| } |
| |
| closeInfo = closeInfo.SpawnRef(arc, IsDef(x), x) |
| |
| for _, c := range arc.Conjuncts { |
| var a []*Vertex |
| if env != nil { |
| a = env.Deref |
| } |
| c = updateCyclic(c, cyclic, arc, a) |
| |
| // Note that we are resetting the tree here. We hereby assume that |
| // closedness conflicts resulting from unifying the referenced arc were |
| // already caught there and that we can ignore further errors here. |
| c.CloseInfo = closeInfo |
| n.addExprConjunct(c) |
| } |
| } |
| |
| // isDef reports whether an expressions is a reference that references a |
| // definition anywhere in its selection path. |
| // |
| // TODO(performance): this should be merged with resolve(). But for now keeping |
| // this code isolated makes it easier to see what it is for. |
| func isDef(x Expr) bool { |
| switch r := x.(type) { |
| case *FieldReference: |
| return r.Label.IsDef() |
| |
| case *SelectorExpr: |
| if r.Sel.IsDef() { |
| return true |
| } |
| return isDef(r.X) |
| |
| case *IndexExpr: |
| return isDef(r.X) |
| } |
| return false |
| } |
| |
| // updateCyclicStatus looks for proof of non-cyclic conjuncts to override |
| // a structural cycle. |
| func (n *nodeContext) updateCyclicStatus(env *Environment) { |
| if env == nil || !env.Cyclic { |
| n.hasNonCycle = true |
| } |
| } |
| |
| func updateCyclic(c Conjunct, cyclic bool, deref *Vertex, a []*Vertex) Conjunct { |
| env := c.Env |
| switch { |
| case env == nil: |
| if !cyclic && deref == nil { |
| return c |
| } |
| env = &Environment{Cyclic: cyclic} |
| case deref == nil && env.Cyclic == cyclic && len(a) == 0: |
| return c |
| default: |
| // The conjunct may still be in use in other fields, so we should |
| // make a new copy to mark Cyclic only for this case. |
| e := *env |
| e.Cyclic = e.Cyclic || cyclic |
| env = &e |
| } |
| if deref != nil || len(a) > 0 { |
| cp := make([]*Vertex, 0, len(a)+1) |
| cp = append(cp, a...) |
| if deref != nil { |
| cp = append(cp, deref) |
| } |
| env.Deref = cp |
| } |
| if deref != nil { |
| env.Cycles = append(env.Cycles, deref) |
| } |
| return MakeConjunct(env, c.Expr(), c.CloseInfo) |
| } |
| |
| func (n *nodeContext) addValueConjunct(env *Environment, v Value, id CloseInfo) { |
| n.updateCyclicStatus(env) |
| |
| ctx := n.ctx |
| |
| if x, ok := v.(*Vertex); ok { |
| if m, ok := x.BaseValue.(*StructMarker); ok { |
| n.aStruct = x |
| n.aStructID = id |
| if m.NeedClose { |
| id = id.SpawnRef(x, IsDef(x), x) |
| id.IsClosed = true |
| } |
| } |
| |
| cyclic := env != nil && env.Cyclic |
| |
| if !x.IsData() { |
| // TODO: this really shouldn't happen anymore. |
| if isComplexStruct(ctx, x) { |
| // This really shouldn't happen, but just in case. |
| n.addVertexConjuncts(env, id, x, x) |
| return |
| } |
| |
| for _, c := range x.Conjuncts { |
| c = updateCyclic(c, cyclic, nil, nil) |
| c.CloseInfo = id |
| n.addExprConjunct(c) // TODO: Pass from eval |
| } |
| return |
| } |
| |
| // TODO: evaluate value? |
| switch v := x.BaseValue.(type) { |
| default: |
| panic(fmt.Sprintf("invalid type %T", x.BaseValue)) |
| |
| case *ListMarker: |
| n.vLists = append(n.vLists, x) |
| return |
| |
| case *StructMarker: |
| |
| case Value: |
| n.addValueConjunct(env, v, id) |
| } |
| |
| if len(x.Arcs) == 0 { |
| return |
| } |
| |
| s := &StructLit{} |
| |
| // Keep ordering of Go struct for topological sort. |
| n.node.AddStruct(s, env, id) |
| n.node.Structs = append(n.node.Structs, x.Structs...) |
| |
| for _, a := range x.Arcs { |
| // TODO(errors): report error when this is a regular field. |
| c := MakeConjunct(nil, a, id) |
| c = updateCyclic(c, cyclic, nil, nil) |
| n.insertField(a.Label, c) |
| s.MarkField(a.Label) |
| } |
| return |
| } |
| |
| switch b := v.(type) { |
| case *Bottom: |
| n.addBottom(b) |
| return |
| case *Builtin: |
| if v := b.BareValidator(); v != nil { |
| n.addValueConjunct(env, v, id) |
| return |
| } |
| } |
| |
| if !n.updateNodeType(v.Kind(), v, id) { |
| return |
| } |
| |
| switch x := v.(type) { |
| case *Disjunction: |
| n.addDisjunctionValue(env, x, id) |
| |
| case *Conjunction: |
| for _, x := range x.Values { |
| n.addValueConjunct(env, x, id) |
| } |
| |
| case *Top: |
| n.hasTop = true |
| |
| case *BasicType: |
| // handled above |
| |
| case *BoundValue: |
| switch x.Op { |
| case LessThanOp, LessEqualOp: |
| if y := n.upperBound; y != nil { |
| n.upperBound = nil |
| v := SimplifyBounds(ctx, n.kind, x, y) |
| if err := valueError(v); err != nil { |
| err.AddPosition(v) |
| err.AddPosition(n.upperBound) |
| err.AddClosedPositions(id) |
| } |
| n.addValueConjunct(env, v, id) |
| return |
| } |
| n.upperBound = x |
| |
| case GreaterThanOp, GreaterEqualOp: |
| if y := n.lowerBound; y != nil { |
| n.lowerBound = nil |
| v := SimplifyBounds(ctx, n.kind, x, y) |
| if err := valueError(v); err != nil { |
| err.AddPosition(v) |
| err.AddPosition(n.lowerBound) |
| err.AddClosedPositions(id) |
| } |
| n.addValueConjunct(env, v, id) |
| return |
| } |
| n.lowerBound = x |
| |
| case EqualOp, NotEqualOp, MatchOp, NotMatchOp: |
| // This check serves as simplifier, but also to remove duplicates. |
| k := 0 |
| match := false |
| for _, c := range n.checks { |
| if y, ok := c.(*BoundValue); ok { |
| switch z := SimplifyBounds(ctx, n.kind, x, y); { |
| case z == y: |
| match = true |
| case z == x: |
| continue |
| } |
| } |
| n.checks[k] = c |
| k++ |
| } |
| n.checks = n.checks[:k] |
| if !match { |
| n.checks = append(n.checks, x) |
| } |
| return |
| } |
| |
| case Validator: |
| // This check serves as simplifier, but also to remove duplicates. |
| for i, y := range n.checks { |
| if b := SimplifyValidator(ctx, x, y); b != nil { |
| n.checks[i] = b |
| return |
| } |
| } |
| n.updateNodeType(x.Kind(), x, id) |
| n.checks = append(n.checks, x) |
| |
| case *Vertex: |
| // handled above. |
| |
| case Value: // *NullLit, *BoolLit, *NumLit, *StringLit, *BytesLit, *Builtin |
| if y := n.scalar; y != nil { |
| if b, ok := BinOp(ctx, EqualOp, x, y).(*Bool); !ok || !b.B { |
| n.addConflict(x, y, x.Kind(), y.Kind(), n.scalarID, id) |
| } |
| // TODO: do we need to explicitly add again? |
| // n.scalar = nil |
| // n.addValueConjunct(c, BinOp(c, EqualOp, x, y)) |
| break |
| } |
| n.scalar = x |
| n.scalarID = id |
| |
| default: |
| panic(fmt.Sprintf("unknown value type %T", x)) |
| } |
| |
| if n.lowerBound != nil && n.upperBound != nil { |
| if u := SimplifyBounds(ctx, n.kind, n.lowerBound, n.upperBound); u != nil { |
| if err := valueError(u); err != nil { |
| err.AddPosition(n.lowerBound) |
| err.AddPosition(n.upperBound) |
| err.AddClosedPositions(id) |
| } |
| n.lowerBound = nil |
| n.upperBound = nil |
| n.addValueConjunct(env, u, id) |
| } |
| } |
| } |
| |
| func valueError(v Value) *ValueError { |
| if v == nil { |
| return nil |
| } |
| b, _ := v.(*Bottom) |
| if b == nil { |
| return nil |
| } |
| err, _ := b.Err.(*ValueError) |
| if err == nil { |
| return nil |
| } |
| return err |
| } |
| |
| // addStruct collates the declarations of a struct. |
| // |
| // addStruct fulfills two additional pivotal functions: |
| // 1) Implement vertex unification (this happens through De Bruijn indices |
| // combined with proper set up of Environments). |
| // 2) Implied closedness for definitions. |
| // |
| func (n *nodeContext) addStruct( |
| env *Environment, |
| s *StructLit, |
| closeInfo CloseInfo) { |
| |
| n.updateCyclicStatus(env) // to handle empty structs. |
| |
| ctx := n.ctx |
| |
| // NOTE: This is a crucial point in the code: |
| // Unification derferencing happens here. The child nodes are set to |
| // an Environment linked to the current node. Together with the De Bruijn |
| // indices, this determines to which Vertex a reference resolves. |
| |
| // TODO(perf): consider using environment cache: |
| // var childEnv *Environment |
| // for _, s := range n.nodeCache.sub { |
| // if s.Up == env { |
| // childEnv = s |
| // } |
| // } |
| childEnv := &Environment{ |
| Up: env, |
| Vertex: n.node, |
| } |
| if env != nil { |
| childEnv.Cyclic = env.Cyclic |
| childEnv.Deref = env.Deref |
| } |
| |
| s.Init() |
| |
| if s.HasEmbed && !s.IsFile() { |
| closeInfo = closeInfo.SpawnGroup(nil) |
| } |
| |
| parent := n.node.AddStruct(s, childEnv, closeInfo) |
| closeInfo.IsClosed = false |
| parent.Disable = true // disable until processing is done. |
| |
| for _, d := range s.Decls { |
| switch x := d.(type) { |
| case *Field: |
| // handle in next iteration. |
| |
| case *OptionalField: |
| if x.Label.IsString() { |
| n.aStruct = s |
| n.aStructID = closeInfo |
| } |
| |
| case *DynamicField: |
| n.aStruct = s |
| n.aStructID = closeInfo |
| n.dynamicFields = append(n.dynamicFields, envDynamic{childEnv, x, closeInfo, nil}) |
| |
| case *ForClause: |
| // Why is this not an embedding? |
| n.forClauses = append(n.forClauses, envYield{childEnv, x, closeInfo, nil}) |
| |
| case Yielder: |
| // Why is this not an embedding? |
| n.ifClauses = append(n.ifClauses, envYield{childEnv, x, closeInfo, nil}) |
| |
| case Expr: |
| // add embedding to optional |
| |
| // TODO(perf): only do this if addExprConjunct below will result in |
| // a fieldSet. Otherwise the entry will just be removed next. |
| id := closeInfo.SpawnEmbed(x) |
| |
| // push and opo embedding type. |
| n.addExprConjunct(MakeConjunct(childEnv, x, id)) |
| |
| case *BulkOptionalField: |
| n.aStruct = s |
| n.aStructID = closeInfo |
| |
| case *Ellipsis: |
| n.aStruct = s |
| n.aStructID = closeInfo |
| |
| default: |
| panic("unreachable") |
| } |
| } |
| |
| if !s.HasEmbed { |
| n.aStruct = s |
| n.aStructID = closeInfo |
| } |
| |
| // Apply existing fields |
| for _, arc := range n.node.Arcs { |
| // Reuse Acceptor interface. |
| parent.MatchAndInsert(ctx, arc) |
| } |
| |
| parent.Disable = false |
| |
| for _, d := range s.Decls { |
| switch x := d.(type) { |
| case *Field: |
| if x.Label.IsString() { |
| n.aStruct = s |
| n.aStructID = closeInfo |
| } |
| n.insertField(x.Label, MakeConjunct(childEnv, x, closeInfo)) |
| } |
| } |
| } |
| |
| // TODO(perf): if an arc is the only arc with that label added to a Vertex, and |
| // if there are no conjuncts of optional fields to be added, then the arc could |
| // be added as is until any of these conditions change. This would allow |
| // structure sharing in many cases. One should be careful, however, to |
| // recursively track arcs of previously unified evaluated vertices ot make this |
| // optimization meaningful. |
| // |
| // An alternative approach to avoid evaluating optional arcs (if we take that |
| // route) is to not recursively evaluate those arcs, even for Finalize. This is |
| // possible as it is not necessary to evaluate optional arcs to evaluate |
| // disjunctions. |
| func (n *nodeContext) insertField(f Feature, x Conjunct) *Vertex { |
| ctx := n.ctx |
| arc, isNew := n.node.GetArc(f) |
| |
| arc.addConjunct(x) |
| |
| switch { |
| case isNew: |
| for _, s := range n.node.Structs { |
| if s.Disable { |
| continue |
| } |
| s.MatchAndInsert(ctx, arc) |
| } |
| |
| case arc.state != nil: |
| s := arc.state |
| switch { |
| case arc.Status() <= AllArcs: |
| // This may happen when a struct has multiple comprehensions, where |
| // the insertion of one of which depends on the outcome of another. |
| |
| // TODO: to something more principled by allowing values to |
| // monotonically increase. |
| arc.status = Partial |
| arc.BaseValue = nil |
| s.disjuncts = s.disjuncts[:0] |
| s.disjunctErrs = s.disjunctErrs[:0] |
| |
| fallthrough |
| |
| default: |
| arc.state.addExprConjunct(x) |
| } |
| |
| case arc.Status() == 0: |
| default: |
| // TODO: handle adding to finalized conjunct |
| panic(fmt.Sprintf("unhandled %d", arc.status)) |
| } |
| return arc |
| } |
| |
| // expandOne adds dynamic fields to a node until a fixed point is reached. |
| // On each iteration, dynamic fields that cannot resolve due to incomplete |
| // values are skipped. They will be retried on the next iteration until no |
| // progress can be made. Note that a dynamic field may add more dynamic fields. |
| // |
| // forClauses are processed after all other clauses. A struct may be referenced |
| // before it is complete, meaning that fields added by other forms of injection |
| // may influence the result of a for clause _after_ it has already been |
| // processed. We could instead detect such insertion and feed it to the |
| // ForClause to generate another entry or have the for clause be recomputed. |
| // This seems to be too complicated and lead to iffy edge cases. |
| // TODO(errors): detect when a field is added to a struct that is already used |
| // in a for clause. |
| func (n *nodeContext) expandOne() (done bool) { |
| // Don't expand incomplete expressions if we detected a cycle. |
| if n.done() || (n.hasCycle && !n.hasNonCycle) { |
| return false |
| } |
| |
| var progress bool |
| |
| if progress = n.injectDynamic(); progress { |
| return true |
| } |
| |
| if progress = n.injectEmbedded(&(n.ifClauses)); progress { |
| return true |
| } |
| |
| if progress = n.injectEmbedded(&(n.forClauses)); progress { |
| return true |
| } |
| |
| // Do expressions after comprehensions, as comprehensions can never |
| // refer to embedded scalars, whereas expressions may refer to generated |
| // fields if we were to allow attributes to be defined alongside |
| // scalars. |
| exprs := n.exprs |
| n.exprs = n.exprs[:0] |
| for _, x := range exprs { |
| n.addExprConjunct(x.c) |
| |
| // collect and and or |
| } |
| if len(n.exprs) < len(exprs) { |
| return true |
| } |
| |
| // No progress, report error later if needed: unification with |
| // disjuncts may resolve this later later on. |
| return false |
| } |
| |
| // injectDynamic evaluates and inserts dynamic declarations. |
| func (n *nodeContext) injectDynamic() (progress bool) { |
| ctx := n.ctx |
| k := 0 |
| |
| a := n.dynamicFields |
| for _, d := range n.dynamicFields { |
| var f Feature |
| v, complete := ctx.Evaluate(d.env, d.field.Key) |
| if !complete { |
| d.err, _ = v.(*Bottom) |
| a[k] = d |
| k++ |
| continue |
| } |
| if b, _ := v.(*Bottom); b != nil { |
| n.addValueConjunct(nil, b, d.id) |
| continue |
| } |
| f = ctx.Label(d.field.Key, v) |
| n.insertField(f, MakeConjunct(d.env, d.field, d.id)) |
| } |
| |
| progress = k < len(n.dynamicFields) |
| |
| n.dynamicFields = a[:k] |
| |
| return progress |
| } |
| |
| // injectEmbedded evaluates and inserts embeddings. It first evaluates all |
| // embeddings before inserting the results to ensure that the order of |
| // evaluation does not matter. |
| func (n *nodeContext) injectEmbedded(all *[]envYield) (progress bool) { |
| ctx := n.ctx |
| type envStruct struct { |
| env *Environment |
| s *StructLit |
| } |
| var sa []envStruct |
| f := func(env *Environment, st *StructLit) { |
| sa = append(sa, envStruct{env, st}) |
| } |
| |
| k := 0 |
| for i := 0; i < len(*all); i++ { |
| d := (*all)[i] |
| sa = sa[:0] |
| |
| if err := ctx.Yield(d.env, d.yield, f); err != nil { |
| if err.IsIncomplete() { |
| d.err = err |
| (*all)[k] = d |
| k++ |
| } else { |
| // continue to collect other errors. |
| n.addBottom(err) |
| } |
| continue |
| } |
| |
| if len(sa) == 0 { |
| continue |
| } |
| id := d.id.SpawnSpan(d.yield, ComprehensionSpan) |
| for _, st := range sa { |
| n.addStruct(st.env, st.s, id) |
| } |
| } |
| |
| progress = k < len(*all) |
| |
| *all = (*all)[:k] |
| |
| return progress |
| } |
| |
| // addLists |
| // |
| // TODO: association arrays: |
| // If an association array marker was present in a struct, create a struct node |
| // instead of a list node. In either case, a node may only have list fields |
| // or struct fields and not both. |
| // |
| // addLists should be run after the fixpoint expansion: |
| // - it enforces that comprehensions may not refer to the list itself |
| // - there may be no other fields within the list. |
| // |
| // TODO(embeddedScalars): for embedded scalars, there should be another pass |
| // of evaluation expressions after expanding lists. |
| func (n *nodeContext) addLists(c *OpContext) (oneOfTheLists Expr, anID CloseInfo) { |
| if len(n.lists) == 0 && len(n.vLists) == 0 { |
| return nil, CloseInfo{} |
| } |
| |
| isOpen := true |
| max := 0 |
| var maxNode Expr |
| |
| if m, ok := n.node.BaseValue.(*ListMarker); ok { |
| isOpen = m.IsOpen |
| max = len(n.node.Arcs) |
| } |
| |
| for _, l := range n.vLists { |
| oneOfTheLists = l |
| |
| elems := l.Elems() |
| isClosed := l.IsClosed(c) |
| |
| switch { |
| case len(elems) < max: |
| if isClosed { |
| n.invalidListLength(len(elems), max, l, maxNode) |
| continue |
| } |
| |
| case len(elems) > max: |
| if !isOpen { |
| n.invalidListLength(max, len(elems), maxNode, l) |
| continue |
| } |
| isOpen = !isClosed |
| max = len(elems) |
| maxNode = l |
| |
| case isClosed: |
| isOpen = false |
| maxNode = l |
| } |
| |
| for _, a := range elems { |
| if a.Conjuncts == nil { |
| x := a.BaseValue.(Value) |
| n.insertField(a.Label, MakeConjunct(nil, x, CloseInfo{})) |
| continue |
| } |
| for _, c := range a.Conjuncts { |
| n.insertField(a.Label, c) |
| } |
| } |
| } |
| |
| outer: |
| for i, l := range n.lists { |
| n.updateCyclicStatus(l.env) |
| |
| index := int64(0) |
| hasComprehension := false |
| for j, elem := range l.list.Elems { |
| switch x := elem.(type) { |
| case Yielder: |
| err := c.Yield(l.env, x, func(e *Environment, st *StructLit) { |
| label, err := MakeLabel(x.Source(), index, IntLabel) |
| n.addErr(err) |
| index++ |
| c := MakeConjunct(e, st, l.id) |
| n.insertField(label, c) |
| }) |
| hasComprehension = true |
| if err != nil { |
| n.addBottom(err) |
| continue outer |
| } |
| |
| case *Ellipsis: |
| if j != len(l.list.Elems)-1 { |
| n.addErr(c.Newf("ellipsis must be last element in list")) |
| } |
| |
| n.lists[i].elipsis = x |
| |
| default: |
| label, err := MakeLabel(x.Source(), index, IntLabel) |
| n.addErr(err) |
| index++ // TODO: don't use insertField. |
| n.insertField(label, MakeConjunct(l.env, x, l.id)) |
| } |
| |
| // Terminate early n case of runaway comprehension. |
| if !isOpen && int(index) > max { |
| n.invalidListLength(max, int(index), maxNode, l.list) |
| continue outer |
| } |
| } |
| |
| oneOfTheLists = l.list |
| anID = l.id |
| |
| switch closed := n.lists[i].elipsis == nil; { |
| case int(index) < max: |
| if closed { |
| n.invalidListLength(int(index), max, l.list, maxNode) |
| continue |
| } |
| |
| case int(index) > max, |
| closed && isOpen, |
| (!closed == isOpen) && !hasComprehension: |
| max = int(index) |
| maxNode = l.list |
| isOpen = !closed |
| } |
| |
| n.lists[i].n = index |
| } |
| |
| // add additionalItem values to list and construct optionals. |
| elems := n.node.Elems() |
| for _, l := range n.vLists { |
| if !l.IsClosed(c) { |
| continue |
| } |
| |
| newElems := l.Elems() |
| if len(newElems) >= len(elems) { |
| continue // error generated earlier, if applicable. |
| } |
| |
| for _, arc := range elems[len(newElems):] { |
| l.MatchAndInsert(c, arc) |
| } |
| } |
| |
| for _, l := range n.lists { |
| if l.elipsis == nil { |
| continue |
| } |
| |
| s := &StructLit{Decls: []Decl{l.elipsis}} |
| s.Init() |
| info := n.node.AddStruct(s, l.env, l.id) |
| |
| for _, arc := range elems[l.n:] { |
| info.MatchAndInsert(c, arc) |
| } |
| } |
| |
| sources := []ast.Expr{} |
| // Add conjuncts for additional items. |
| for _, l := range n.lists { |
| if l.elipsis == nil { |
| continue |
| } |
| if src, _ := l.elipsis.Source().(ast.Expr); src != nil { |
| sources = append(sources, src) |
| } |
| } |
| |
| if m, ok := n.node.BaseValue.(*ListMarker); !ok { |
| n.node.SetValue(c, Partial, &ListMarker{ |
| Src: ast.NewBinExpr(token.AND, sources...), |
| IsOpen: isOpen, |
| }) |
| } else { |
| if expr, _ := m.Src.(ast.Expr); expr != nil { |
| sources = append(sources, expr) |
| } |
| m.Src = ast.NewBinExpr(token.AND, sources...) |
| m.IsOpen = m.IsOpen && isOpen |
| } |
| |
| n.lists = n.lists[:0] |
| n.vLists = n.vLists[:0] |
| |
| return oneOfTheLists, anID |
| } |
| |
| func (n *nodeContext) invalidListLength(na, nb int, a, b Expr) { |
| n.addErr(n.ctx.Newf("incompatible list lengths (%d and %d)", na, nb)) |
| } |